• 제목/요약/키워드: 실험오차

검색결과 4,212건 처리시간 0.032초

실험설계법 기반 풍동시험 시스템 오차 검출 실험연구 (Experimental Investigations of Systematic Errors in Wind Tunnel Testing Using Design of Experiments)

  • 오세윤;박승오;안승기
    • 한국항공우주학회지
    • /
    • 제41권5호
    • /
    • pp.335-341
    • /
    • 2013
  • 풍동시험 중에 발생하는 시스템오차의 변동에 관한 연구를 수행하였다. 회전익 항공기의 기체 공력특성 측정실험에 실험설계 방법론이 적용되었다. 풍동시험 중에 발생하는 시스템오차의 변동에 관한 연구를 수행하였다. 허용 실험오차 내에서 항상 동일한 결과를 얻어야 하는 전제조건에도 불구하고 한 개의 실험시간 블록에서 측정된 힘과 모멘트가 다른 시간블록에서 측정된 것과 상당량 다르게 측정되었다. 실험관련 시스템오차는 존재하지 않는다고 임의로 간주해서는 안되며 이러한 오차의 감소는 랜덤화, 블록화 및 반복화 등의 실험설계원리의 적용을 통해 가능하다.

다목적 최적화 기법을 이용한 하드디스크 커버 유한요소 모델개선 (HDD Cover FE Model Updating using Multiobjective Optimization)

  • 김경호;박윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.565-570
    • /
    • 2001
  • 대상 기계구조물의 유한요소 모델로부터 구한 해석결과가 실험결과와 오차를 나타낼 때, 이러한 오차를 줄일 수 있도록 유한요소 모델의 변경이 요구된다. 유한요소 모델개선은 이러한 역문제(Inverse Problem)를 다루는 체계적인 접근법이다. 일반적으로 유한요소 모델에서 변경할 수 있는 매개변수의 개수는 실험결과의 개수보다 많으므로 실험결과와 일치되는 개선된 유한요소 모델은 무한하다고 할 수 있다. 그러나, 개선된 유한요소 모델이 물리적 타당성을 갖도록 매개변수의 변경량에 제한을 주면 일반적으로 초기 유한요소 모델에 비해 실험결과와의 오차가 개선된 근사해만 존재하게 된다. 따라서, 모델개선 과정을 통해 구한 개선된 모델은 오차의 평가기준 또는 목적함수에 따라 정해진 다양한 근사해 중 하나이다. 기존의 모델개선 방법에서는 단 하나의 오차 평가기준 또는 목적함수를 사용하고 이를 최소화 하는 모델을 구한다. 개선된 모델을 구하기 이전에는 사용된 평가기준이 타당한지 검토할 수 없으므로 대부분의 경우, 시행착오법으로 목적함수를 설정하게 된다. 본 논문에서는 다목적 최적화 기법을 이용한 오차 평가기준을 소개하고 이를 하드디스크커버 유한요소 모델개선에 응용한다.

  • PDF

실험 오차가 주파수 응답함수에 미치는 영향 (The Effects of Measurement Errors on Frequency Response Functions(FRFs))

  • 정해일
    • 한국실천공학교육학회논문지
    • /
    • 제3권1호
    • /
    • pp.45-50
    • /
    • 2011
  • 유한요소 해석(FEA: finite element analysis)의 발달로 복잡한 기계나 자동차 및 구조물에 대해서도 상세한 진동해석을 할 수 있게 되었다. 그러나, 복잡한 구조물을 정확하게 모형화하기 어렵고, 특히 접합부의 강성과 감쇠 특성을 알기 어렵고, 복잡한 형상을 단순화하는 과정에서 발생하는 오차 등의 이유로 유한요소해석 결과는 부정확할 수 있다. 반면에 실제 구조물의 실험 데이터로부터 추출한 실험적 모드해석(modal testing) 결과는 상세하지는 않지만 정확하다고 볼 수 있다. 그러나 실험 결과가 구조물의 진동 특성을 정확하게 나타낸다는 가정은 여러 가지 측정 오차로 인하여 정확하지 않을 수 있다. 이 논문에서는 실험적 모드해석의 기본이 되는 FRF(frequency response function; 주파수 응답함수)의 측정에 영향을 미치는 오차들을 측정 오차와 신호처리 오차로 구분하여 각각에 대해 세밀히 살펴보고, 그러한 오차들을 감소함으로써 보다 정확한 FRF를 구하는 방법에 대해서 고찰해보았다.

  • PDF

전신 정위 프레임을 이용한 환자의 움직임 및 외부자세 setup 오차 분석

  • 정진범;정원균;서태석;최경식;지영훈;이형구;최보영
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2003년도 제27회 추계학술대회
    • /
    • pp.59-59
    • /
    • 2003
  • 목적 : 환자의 호흡에 의한 움직임 및 부정확한 환자 자세 setup 때문에 3 차원 전신 정위 방사선치료,3 차원 입체조형 방사선치료 IMRT와 같은 방사선 치료기술에서 병소에 대한 정확한 표적 위치측정은 매우 어려운 실정이다. 그러므로 본 연구는 방사선 치료시 환자의 움직임을 최대한 고정시켜 줄 수 있으며 환자 자세에 대한 setup 오차를 감소시키고 환자 전신에 산재한 병소의 위치를 좌표화할 수 있는 전신 정위 프레임 제작과 제작한 프레임에 대한 고정효과 및 재현성을 나타내는 환자 자세의 setup 오차를 평가하는데 있다. 재료 및 방법 : 자체 제작한 전신 정위 프레임 구조는 CT 영상 촬영 가능성에 중점을 두고 병소 표적의 좌표실현 및 환자체형에 따른 다양성 그리고 프레임에 대한 견고성 및 안정성 확인에 초점화하여 제작하였다. 이렇게 제작된 전신 정위 프레임에 대한 방사선 투과율 측정 실험과 CCTV 카메라와 DVR(Digital Video Recorder)를 이용해 환자 자세 변화에 대한 영상을 획득하여 matlab으로 구현한 오차분석용 프로그램으로 환자 외부자세에 대한 오차 비교 평가하고 CT 촬영에 의한 가상표적 위치측정 실험을 수행하였다. 또 한 고정벨트 추가 사용으로 인한 환자의 고정효과 정도를 살펴보았다. 결과 : 제작된 전신 정위 프레임에 대한 방사선 투과율은 마그네트론 10, 21 MeV의 에너지에서 95, 96% 의 투과율이 측정되었고 30 $^{\circ}$. 60 。각도의 경사로 빔이 전달될 때는 90.3, 94.4% 가 측정되었다. CCTV 카메라를 이용하여 흉부 및 복부의 움직임을 촬영한 영상을 Matlab프로그램으로 구현한 오차분석 프로그램을 적용한 결과, 환자 자세에 대한 오차의 평균값은 흉부의 lateral 방향에서는 3.63$\pm$1.4 mm, AP 방향에서는 2.1$\pm$0.82 mm이었다. 그리고 복부의 later의 방향에서는 7.0$\pm$2.1 mm, AP 방향에서는 6.5$\pm$2.2 mm 이었다. 또한 표적 위치측정을 위해서 환자의 피부에 임의의 가상표적을 부착하고 CT 촬영한 영상결과, 프레임으로 가상표 적에 대한 위치를 정확히 파악할 수 있었다. 결론 : 제작된 프레임을 적용하여 방사선투과율 측정실험, 환자 외부자세에 대한 오차 측정실험, 가상표적 위치측정 실험 등을 수행하였다. 환자 외부자세에 대한 오차 측정실험 경우, 더 많은 Volunteer를 적용하여 보다 정확한 오차 측정실험이 수행되어야 할 것이며 정확한 표적 위치 측정실험을 위해서 내부 마커를 삽입한 환자를 적용한 임상실험이 수행되어야 할 것이다. 또한 위치결정에서 획득한 좌표값의 정확성을 알아보기 위해서 팬톰을 이용한 방사선조사 실험이 추후에 실행되어져야 할 것이다. 그리고 제작된 프레임에 Rotating X선 시스템과 내부 장기의 움직임을 계량화하고 PTV에서의 최적 여유폭을 설정함으로써 정위 방사선수술 및 3 차원 업체 방사선치료에 대한 병소 위치측정과 환자의 자세에 대한 setup 오차측정 결정에 도움이 될 수 있을 것이라고 사료된다.

  • PDF

레이저 변위센서를 이용한 도로 표면 요철의 측정 (Measurement of road tining using Laser displacement sensor)

  • 김혜중;김호성;박주한
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1581-1582
    • /
    • 2006
  • 본 논문은 그루빙(grooving), 타이닝(tining), 텍스쳐(texture) 등의 포장도로의 표면 상태를 차량에 장착된 고성능의 레이저 변위센서를 사용하여 주행 중에 정밀하게 측정하는 도로 표면 측정 장비 개발에 관한 논문이다. 본 논문에서는 전체 시스템을 설계 및 시험제작 하였으며, 차량 주행을 모사한 실험 모형을 이용한 실내 실험 및 시험도로에서의 실제 도로 표면 측정 실험을 실시하였다. 실내 포장도면 모사장비를 이용한 실험 결과 타이닝 폭 오차 2%, 깊이 오차 4%(60km/h)를 얻었으며, 실외에서 차량에 레이저센서를 장착 후 측정한 실험에서는 폭 오차 3.24%, 깊이 오차 5% (50km/h)가 측정되었다. 이러한 실험 결과를 토대로 시험도로 상의 실제 도로 표면 측정 실험에서는 25mm, 18mm, 26mm, 그리고 임의의 간격의 횡 방향 및 종 방향 타이닝을 측정하였고 이를 확인하였다.

  • PDF

대화식 다목적 최적화 기법을 이용한 유한요소 모델 개선 (Finite Element Model Updating using Interactive Multiobjective Optimization Technique)

  • 김경호;박윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.660-665
    • /
    • 2002
  • 일반적으로 유한요소 모델로부터 구한 해석결과는 대상 구조물의 모드 실험결과와 오차를 보인다. 이러한 오차로 인해서 유한요소 모델의 효용성에 한계가 발생하게 되면, 모델의 신뢰성을 높일 수 있도록 모델을 보정하는 절차가 필요하다. 유한요소 모델 개선은 이러한 오차를 줄이기 위해서 유한요소 모델을 변경하는 체계적인 접근법이다. 유한요소 모델에서 변경할 수 있는 매개변수의 개수는 실험결과의 개수보다 훨씬 많으므로 실험결과와 일치되는 개선된 모델의 수는 무한하다고 할 수 있다. 그러나, 개선된 유한요소 모델이 물리적 타당성을 갖도록 매개변수의 선택과 변경에 제한을 주면 초기 유한요소 모델에 비해서 실험결과와의 오차가 개선된 근사해만 존재하게 된다. 따라서, 모델 개선 과정을 통해서 구한 개선된 모델은 오차의 평가기준 또는 목적함수에 따라서 정해진 다양한 근사해 중 하나이다. 기존의 모델 개선 방법에서는 실험결과와의 오차를 나타내는 단 하나의 평가기준 또는 목적함수를 사용하고 이를 최소화하는 모델을 구한다. 최적화 결과를 얻기 전에는 사용된 평가기준이 타당한지 검토할 수 없으므로 대부분의 경우, 시행착오 방법으로 목적함수를 설정하게 된다. 본 논문에서는 이러한 문제점을 해결하기 위해서 다목적 최적화 개념을 이용한 평가기준을 소개하고 특히, 대화식 다목적 최적화 기법을 이용하여 유한요소 모델을 개선한다.

  • PDF

로버스트 역전파 알고리즘을 위한 오차함수 (Robust Error Measure for Back Propagation Algorithm)

  • 김현철;이철원
    • 응용통계연구
    • /
    • 제12권2호
    • /
    • pp.505-515
    • /
    • 1999
  • 인공신경망 모형을 적합시키는데 사용하는 역전파 알고리즘을 로버스트하게 만드는 새로운 오차함수를 제안했으며, 새 방법의 성능을 확인하기 위해 Liano가 제안한 방법에 따라 모의실험을 수행했다. 실험결과 새 방법은 LMS방법만큼 안정적이었으며, Liano의 LMLS방법보다 더 로버스트했다. 또 실제 사례를 분석함으로써 이 방법이 의미있는 방법임을 보였다. 새 방법은 특히 오차가 없거나 작은 오차를 갖는 표본에 대해서도 좋은 성질을 가짐으로서 대형오차의 유무에 관계없이 항상 사용할 수 있는 방법으로 판명되었다.

  • PDF

반사 실험을 이용한 알루미늄 반사경의 중주파 오차 측정 (Measuring mid frequency error using mirror reflection test)

  • Jeong, Byeongjoon;Pak, Soojong;Kim, Sanghyuk;Lee, Kwang Jo
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.109.1-109.1
    • /
    • 2014
  • 다이아몬드 선삭 기계(DTM)를 이용한 렌즈 및 반사경 가공은 제작시간 단축 및 비용 절감의 장점을 가지고 있다. 그러나 알루미늄과 같은 무른 금속을 가공하여 반사경을 제작하는 경우에는 반사경 표면에 가공오차가 발생한다. 오차는 크기에 따라 고주파 오차(High Frequency Error, HFE), 중주파 오차(Mid Frequency Error, MFE), 저주파 오차(Low Frequency Error, LFE)로 분류 할 수 있다. LFE는 가공한 반사경 표면이 설계된 형상과 얼마나 다른지를 표현하는 값으로 광학 수차와 같이 해상도를 저하시킨다. MFE는 반사경 표면에 수십 마이크로미터 크기로 나타난다. 회전하는 반사경 시료에 다이아몬드 툴의 홈이 동심원으로 생기면서 회절격자와 같이 회절 및 간섭 현상을 만든다. HFE는 표면의 거친 정도를 나타내며 반사율과 관련되고 수 나노미터 크기로 나타난다. 본 연구에서는 광학 레이저를 사용하여 MFE가 광학 성능에 미치는 영향을 분석하였다. 유리 반사경과 MFE를 제거한 반사경, 제거하지 않은 반사경에 대하여 실험을 진행하였다. 본 실험 결과는 반사경 가공 표면을 평가할 수 있는 유용한 자료가 될 것이다.

  • PDF

내진성능평가를 위한 상사법칙에 관한 연구 (A Study on Similitude Law for Evaluation of Seismic Performance)

  • Kim, Nam-Sik;Kwak, Young-Hak;Chang, Sung-Pil
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.208-215
    • /
    • 2003
  • 지진하중에 대한 구조물의 동적 거동과 성능을 예측 평가하기 위하여 실험적 방법들이 흔히 사용되고 있으나, 실험장비의 제약과 구조물의 규모 등으로 대부분 축소모형실험에 의존하고 있다. 그러나 일반적인 상사법칙(similitude law)은 탄성범위에서 유도된 것으로 지진거동과 같은 비탄성 거동을 예측하는 경우에는 한계가 있다. 또한 탄성범위 내에서도 크기효과(size offset)가 발생하므로 축소모형의 실험결과를 원형 구조물에 직접 적용하는 것은 많은주의가 필요하다. 본 연구에서는 원형 구조물(prototype)과 축소모형(scaled model)을 모두 실험 대상으로 하여 실제 축소모형만을 실험하여 원형 구조물의 거동을 예측하는 경우의 문제점을 확인하고 그 해결방법을 모색하고자 한다. 실제로 축소모형실험에서는 원형 구조물의 경계조건을 정확히 재현하기 어려우며, 실험모형의 제작과정과 실험과정에서의 모든오차가강성의 변화로 반영되어 나타난다. 따라서 본 연구에서는 기하학적 상사율과 변화된 강성비(stiffness ratio)를 함께 고려하여 고유진동수의 오차를 보정하고 비탄성 거동중에도 직접적인 실험결과의 비교가 가능한 상사법칙을 제안하였다. 더불어 제안된 상사법칙을 적용한 유사동적실험 (pseudodynamic test)을 수행하여 실험오차보정(experimental error compensation)효과를 검증하였다.

  • PDF

유속-면적법으로 측정된 유량에 대한 측정 불확도 평가 (Assessment of Uncertainty for Discharge Measurement using Velocity-Area method)

  • 김종민;김동수;김서준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.104-104
    • /
    • 2016
  • 소규모 하천에서의 평수기 유량 측정은 일반적으로 지점식 초음파 유속계, 프로펠러 유속계 등을 활용해 도섭법으로 측정된 유속 측정성과를 기반하여 유속-면적법으로 산정된다. 유속-면적법으로 측정된 유량 측정 성과는 횡방향 측선의 수, 수심방향 측점의 수, 측정 시간, 수심 등 제반 측정 인자에 의해 영향을 받고 유량 불확도는 각 인자 별 오차에 영향을 받는다. ISO 748 (2007)과 ISO 1088 (2007)은 유속-면적법 적용방법, 현장 측정 가이드라인, 불확도 인자 별 적용 요건에 따른 오차, 최종 유량 불확도 산정 기법을 제시하였다. 따라서, 국내외 유량조사 기관에서는 유속면적법을 적용할 경우, ISO에서 제시된 인자 별 오차 및 유량 불확도 산정 기법을 기반으로 유량 불확도를 산정해왔다. ISO 748과 1088은 다양한 규모의 실제 하천에서 관측된 자료를 기반으로 횡방향 측선 수, 수심방향 측점 수 (2점법, 3점법 등), 측정 시간 등과 관련된 인자 별 오차를 표로 상세하게 제시하였고 실무에서는 별도 추가 검증없이 사용해 왔다. 그러나, ISO에서 유속-면적법 유량 측정 불확도를 평가하기 위해 사용된 측정자료는 유량을 제어하기 힘들고 유속 측정 상황이 유출 조건 별로 상이한 현장 자료를 기반으로 하였고, 상대적으로 정확도가 낮은 프로펠러유속계를 기반으로 1960년대에 관측된 자료들을 주로 활용하여 도출되었다. 따라서, 본 연구에서는 기존 ISO에서 제시한 유속-면적법에 필요한 인자들의 오차를 정밀 실규모 실험을 통해 재산정하여 기존 ISO 748과 1088에서 제시한 인자별 오차의 적정성을 검증하고자 하였다. 이를 위해 흐름을 안정적으로 통제할 수 있는 건설기술연구원 안동 하천실험센터의 완경사수로(A2)에서 정상상태의 폭 7m, 수심 1m, 유속 약 1m/s의 흐름을 유지한 후, 유속 측정 정확도가 우수한 micro-ADV를 활용하여 공간적으로 매우 정밀하게 유속을 측정하고, 수심은 Total Station을 기반으로 흐름 발생 전에 정밀 측정하였다. 오차 분석 결과, ISO 규정에서 제시한 오차와 본 실험의 결과로 도출된 인자들의 오차는 상당한 차이를 보였다. 따라서, 본 연구 결과로 도출된 유속-면적법의 인자 별 오차는 실험이 수행된 소하천 규모의 하천에서 도섭법으로 산정된 유량의 불확도를 평가할 경우에 활용될 것으로 기대된다.

  • PDF