• Title/Summary/Keyword: 실트함유량

Search Result 38, Processing Time 0.021 seconds

Occurrence of Sand Liquefaction on Static and Cyclic Loading (정적 및 동적 하중에서 모래의 액상화 발생)

  • 양재혁
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.235-244
    • /
    • 2001
  • Liquefaction may be caused by sudden decrease in the soil strength under undrained conditions. This loss of soil strength is related to the development of excess pore pressures. During this study, fines content affects the maximum and minimum void ratios are investigated. The results of static and cyclic triaxial test on silty saturated sands are presented. These tests are performed to evaluate liquefaction strength and static and cyclic behavior characteristics. The samples are obtained from Saemangeum and drying on air. The main results are summarized as follows : 1) The maximum and minimum void ratio lines follow similar trends. 2) Maximum and minimum void ratios are established at 20~30% fines content. 3) As confining pressures and overconsolidation ratio are increased, the resistance to liquefaction are increased. 4) Instability friction angles are increased with increasing initial relative density. 5) The resistance to liquefaction are decreased with increasing effective stress ratio.

  • PDF

Partial Drainage Characteristics of Clayey Silt with Low Plasticity from the West Coast (서해안 저소성 점토질 실트 지반의 부분배수 특성)

  • Kim, Seok-Jo;Lee, Sang-Duk;Kim, Ju-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.9
    • /
    • pp.17-27
    • /
    • 2016
  • Parial drainage characteristics of clayey silt with low plasticity from the west coast (Incheon and Hwaseong) was analyzed using CPTU based existing correlation equations and compulsory replacement method. Generally, the estimated $OCRs={\kappa}{\cdot}((q_t-{\sigma}_{vo})/{\sigma}^{\prime}_{vo})$ using Powell and Quartman(1988) were higher than those obtained by the oeodometer tests. These trends were noticeable for the layers containing a lot of silty and sand soils. The assessment of partial drainage conditions was performed through Schnaid et al. (2004)'s equation; it is based on plotting the normalized cone resistance, $Q_t$ versus the pore pressure parameter, $B_q$ in combination with the strength incremental ratio, $s_u/{\sigma}^{\prime}_{vo}$ to the CPTU data. It is evident that more than half of the data fall in the range where $B_q$ < 0.3, corresponding to the domain in which the partial drainage prevails when testing normally consolidated soils at a standard rate of penetration (2 cm/s). To estimate the replacement depth of clayey silt with low plasticity, back analysis was carried out to evaluate the internal friction angle based on where the design depths are equal to the checked depths using bearing capacity equation. The internal friction angels obtained from the back analysis tended to increase as the plasticity index decreases, which is ranged approximately from ${\varphi}^{\prime}=2^{\circ}$ to ${\varphi}^{\prime}=7^{\circ}$.

Strength and Stiffness of Silty Sands with Different Overconsolidation Ratios and Water Contents (과압밀비와 함수비를 고려한 실트질 사질토 지반의 강도 및 변형 특성)

  • Kim Hyun-Ju;Lee Kyoung-Suk;Lee Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.53-64
    • /
    • 2005
  • For geotechnical design in practice, soils are, in general, assumed to behave as a linear elastic or perfect plastic material. More realistic geotechnical design, however, should take into account various factors that affect soil behavior in the field, such as non-linearity of stress-strain response, stress history, and water content. In this study, a series of laboratory tests including triaxial and resonant column tests were peformed with sands of various silt contents, relative densities, stress states, OCR and water contents. This aims at investigating effects of various factors that affect strength and stiffness of sands. From the results in this study, it is found that the effect of OCR is significant for the intermediate stress-strain range from the initial to failure, while it may be ignored for the initial stiffness and peak strength. For the effect of water content, it is observed that the initial elastic modulus decreases with increasing water content at lower confining stress and relative density At higher confining stresses, the effect of water content Is found to become small.

Numerical Analysis on Drained and Undrained Pullout Capacity in Reinforced Soil (보강토에서의 배수 및 비배수 인발력에 대한 수치해석)

  • Lee, Hong-Sung;Son, Moo-Rak
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.113-123
    • /
    • 2007
  • In order to ensure the stability of reinforced structures backfilled with low permeability soil, it is very important to determine the change in undrained pullout capacity compared to drained pullout capacity prior to design. In this research, a series of numerical analyses on laboratory pullout tests have been performed on different materials (clean sand, 5, 10, and 15% silty sand), different overburden pressures (30, 100 and 200 kPa), and different drainage conditions (drained and undrained) in order to compare drained pullout capacity with undrained pullout capacity. The results of numerical analysis also have been compared with the results of the laboratory pullout tests. The analysis results show that both drained and undrained pullout capacity are influenced by silt contents and increase with increase of friction angle of the soil and overburden pressure. In undrained condition, the effective stresses acting on the reinforcement decrease as excessive pore pressures are generated, resulting in decrease in pullout capacity; 57% for 30 kPa, and 70% for 100 and 200 kPa. These results show a good agreement with the results of the laboratory pullout tests performed under the same condition.

Drained and Undrained Pullout Capacity in Steel Strip Reinforced Silty Sands (강보강재로 보강된 실트질 모래의 배수 및 비배수 인발력)

  • Lee Hong-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.5-13
    • /
    • 2006
  • Effective stresses may decrease due to generation of excessive pore pressure at the interface between soil and reinforcement in undrained condition such as rapid drawdownof groundwater level, resulting in the decrease in pullout capacity of the reinforcement. In this research, a series of laboratory pullout tests have been performed on different materials (clean sand, 5, 10, 15 and 35% silty sand), different overburden pressures (30, 100 and 200 kPa), and different drainage conditions (drained and undrained) in order to compare drained pullout capacity with undrained pullout capacity. The test results show that both drained and undrained pullout capacity are influenced by silt contents and increase with the increase of friction angle of the soil. The pullout capacity and the pullout displacement required to reach the peak value also increase as the overburden pressure increases. In undrained condition, the effective stresses acting on the reinforcement decrease as excessive pore pressures are generated, resulting in the decrease in pullout capacity and pullout displacement.

Effects of Gradation on Dynamic properties of Sands (모래의 입도가 동적 특성에 미치는 영향)

  • 송정락;김수일
    • Geotechnical Engineering
    • /
    • v.3 no.2
    • /
    • pp.7-16
    • /
    • 1987
  • The dynamic properties of soils are affected by parameters like, gradation characteristics, void ratio, confining pressure, etc. . This study mainly investigated experimentally the effect of gradation on the dynamic properties of sands with the effect of void ratio and confining pressure. Test results showed that shear modulus/damping ratio was increased/decreased with the decrease of void ratio and with the increase of confining pressure. When the fine content increased, shear modulus/damping ratio was decreased/increased. This study explained this phenomenon by the concept of the "effective number of contacts" and the "dead space".ot;dead space".uot;.

  • PDF

Assessment of the Correlation between Segregation Potential and Hydraulic Conductivity with Fines Fraction (세립분 함유량에 따른 동상민감성 지수와 수리전도도의 상관관계 평가)

  • Jin, Hyunwoo;Kim, Incheol;Eun, Jongwan;Ryu, Byung Hyun;Lee, Jangguen
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.47-56
    • /
    • 2021
  • The cryosuction (negative pore pressure) in freezing soils causes groundwater migration from the frozen fringe to freezing front for ice lens formation. Frost heave and heaving pressure by ice lens cause damage to ground infrastructure. In order to prevent damage by the frost heave, various frost susceptibility criteria have been proposed. The SP (Segregation Potential) is the most widely used classification criterion for frost susceptibility in cold regions. The expansion of the ice lens by the migration of the groundwater is a key role in frost heave mechanism, and thus it is necessary to evaluate the hydraulic conductivity. In this paper, soil mixtures of coarse-fines (sand-silt) were prepared in various weight fractions and used for frost heave and column permeability test. For each case, the SP and the hydraulic conductivity were derived and correlations were analyzed. As a results, the transition threshold of the SP and the hydraulic conductivity were shown at 20% and 50% of the silt weight fraction, respectively. Although there are difference between these transition thresholds, these two coefficients show a specific correlation. In the future, additional study should be conducted for detailed analysis of the threshold transition values between SP and hydraulic conductivity.

The Frost-Susceptibility of Compacted Coal Ash with Proper Mixing Ratio of Fly Ash to Bottom Ash (비회와 저회의 적정 혼합비로 다짐한 석탄회의 동상성)

  • Chun, Byung Sik;Gang, In Sung;Koh, Yong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.173-178
    • /
    • 1993
  • The most appropriate mixing ratio of fly ash to bottom ash obtained from compaction characteristics and CBR values is varying from 5:5 to 6:4. But these mixed ashes are frost-susceptible materials according to judging by the paticle-size distribution because of a lot of silty-size paticles. In this study, the frost-susceptibility of compacted coal ash with proper mixing ratio is examined experimentally for use of subgrade materials. And, the efforts have been made to find proper cement addition in making these mixed ashes frost-insusceptible. It was revealed that these mixed ashes are frost-susceptible, and 4% of cement content is required to be made frost-insusceptable. It was found that amount of frost heave of these mixed ashes decreases with the unconfined compressive strength, and increases with log k if the permeability coefficient k is as low as the water into the freezing front of these mixed ashes is restricted.

  • PDF

Effect of Engineering Properties on Resilient Modulus of Cohesive Soil as Subgrade (세립토의 회복탄성계수(Mr)에 대한 지반물성치의 영향)

  • Kim, Dong-Gyou;Lee, Ju-Hyung;Hwang, Young-Cheol;Chang, Buhm-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.10
    • /
    • pp.67-74
    • /
    • 2013
  • The objective of this study was to identify the effect of engineering properties on the resilient modulus ($M_r$) of cohesive soils as subgrade. Eight representative cohesive soils representing A-6, and A-7-6 soil types collected from road construction sites, were tested in the laboratory to determine their basic engineering properties. The laboratory tests for the engineering properties were Atterberg limits test, sieve analysis, hydrometer test, Standard Proctor compaction test, and unconfined compressive strength test. Resilient modulus test and unconfined compressive strength test were conducted on unsaturated cohesive soils at three different moisture contents (dry of optimum moisture content, optimum moisture content, and wet of optimum moisture content). The increase in moisture content considerably affected the decrease in the resilient modulus. The resilient modulus increased with an increase in maximum unconfined compressive strength, percent of clay, percent of silt and clay, liquid limit and plasticity index. The resilient modulus decreased with an increase in percent of sand.

A Fundamental Study for Beneficial Use of Dredged Material as a Concrete Admixture (항만준설토의 콘크리트 혼합재로의 활용을 위한 기초적 연구)

  • Oh, Hong-Seob;Oh, Kwang-Jin;Lee, Ju-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.132-141
    • /
    • 2010
  • Recently dredged material generation has a tendency to increase since harbor construction are under progress. In this study, an experiment had been carried out which replacement of dredged material of Busan and Ulsan port as concrete mixing material. For this experiment, physical and chemical test of dredged material was carried out, and compressive strength test of mortal specimen with dredged material in scale, as aggregate replacement, was carried out. Compressive strength of Busan and Ulsan was both increased when the ratio of mixing materials was 10%. Compressive strength of Dredged material from Busan with about 70% of mineral silt showed increse when the ratio of aggregate replacement in 30%. In addition, in the result of the ICP test, both dredged materials satisfied the waste's marine discharge treatment and soil contamination concern and measures criterion on that using dredged material as a concrete material can influence on application of concrete positively.