• Title/Summary/Keyword: 실시간 파라미터 추정

Search Result 67, Processing Time 0.027 seconds

HIPI Controller of IPMSM Drive using ALM-FNN (ALM-FNN을 이용한 IPMSM 드라이브의 HIPI 제어기)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.57-66
    • /
    • 2009
  • The conventional fixed gain PI controller is very sensitive to step change of command speed, parameter variation and load disturbances. The precise speed control of interior permanent magnet synchronous motor(IPMSM) drive becomes a complex issue due to nonlinear coupling among its winding currents and the rotor speed as well as the nonlinear electromagnetic developed torque. Therefore, there exists a need to tune the PI controller parameters on-line to ensure optimum drive performance over a wide range of operating conditions. This paper proposes hybrid intelligent-PI(HIPI) controller of IPMSM drive using adaptive learning mechanism(ALM) and fuzzy neural network(FNN). The proposed controller is developed to ensure accurate speed control of IPMSM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. The PI controller parameters are optimized by ALM-FNN at all possible operating condition in a closed loop vector control scheme, The validity of the proposed controller is verified by results at different dynamic operating conditions.

The Development of Interactive Ski-Simulation Motion Recognition System by Physics-Based Analysis (물리 모델 분석을 통한 상호 작용형 스키시뮬레이터 동작인식 시스템 개발)

  • Jin, Moon-Sub;Choi, Chun-Ho;Chung, Kyung-Ryul
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.205-210
    • /
    • 2013
  • In this research, we have developed a ski-simulation system based on a physics-based simulation model using Newton's second law of motion. Key parameters of the model, which estimates skier's trajectory, speed and acceleration change due to skier's control on ski plate and posture changes, were derived from a field test study performed on real ski slope. Skier's posture and motion were measured by motion capture system composed of 13 high speed IR camera, and skier's control and pressure distribution on ski plate were measured by acceleration and pressure sensors attached on ski plate and ski boots. Developed ski-simulation model analyzes user's full body and center of mass using a depth camera(Microsoft Kinect) device in real time and provides feedback about force, velocity and acceleration for user. As a result, through the development of interactive ski-simulation motion recognition system, we accumulated experience and skills based on physics models for development of sports simulator.

A Positioning Accuracy Analysis in Korea by using NTCM-BC Ionosphere Model (NTCM-BC 전리층 모델을 이용한 한반도 내 위치추정 정확도 분석)

  • Kim, Mingyu;Myung, Jaewook;Kim, Jeongrae
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.479-484
    • /
    • 2017
  • A Neustrelitz TEC model (NTCM) developed by Deutsches Zentrum $f{\ddot{u}}r$ Luft- und Raumfahrt (DLR) provides a better accuracy than the global positioning system (GPS) Klobuchar model for predicting ionospheric delay. The NTCM model accuracy is comparable to Galileo NeQuick model, and it has less computation time. The NTCM model uses F10.7 values as a parameter of solar activity function, while a NTCM-Broadcast (NTCM-BC) uses TEC values from a Klobuchar model. For this reason, a NTCM-BC model can be used for real-time ionosphere correction. In this paper, vertical ionospheric delay and GPS positioning errors in Korea by using a NTCM-BC ionosphere model from 2009 to 2014 are analyzed and compared with those of a Klobuchar model. In the 6-year statistics, the vertical ionospheric delay is reduced by 17.7 %, and horizontal and vertical positioning accuracies by the NTCM-BC model are improved by 25.6 % and 6.7 %, respectively, over the Klobuchar model.

PRECISE ORBIT DETERMINATION OF GPS SATELLITES USING PHASE OBSERVABLES (위상 관측 자료를 이용한 GPS 위성의 정밀 궤도 결정)

  • 지명국;최규홍;박필호
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.375-380
    • /
    • 1997
  • The accuracy of user position by GPS is heavily dependent upon the accuracy of satellite position which is usually transmitted to GPS users in radio signals. The real-time satellite position information directly obtained from broadcast ephimerides has the accuracy of 3~10 meters which is very unsatisfactory to measure 100km baseline to the accuracy of less than a few mili-meters. There are globally at present seven orbit analysis centers capable of generating precise GPS ephimerides and their orbit quality is of the order of about 10cm. Therefore, precise orbit model and phase processing technique were reviewed and consequently precise GPS ephimerides were produced after processing the phase observables of 28 global GPS stations for 1 day. Initial 6 orbit parameters and 2 solar radiation coefficients were estimated using batch least square algorithm and the final results were compared with the orbit of IGS, the International GPS Service for Goedynamics.

  • PDF

Intelligent Maneuvering Target Tracking Based on Noise Separation (잡음 구분에 의한 지능형 기동표적 추적기법)

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.469-474
    • /
    • 2011
  • This paper presents the intelligent tracking method for maneuvering target using the positional error compensation of the maneuvering target. The difference between measured point and predict point is separated into acceleration and noise. K-means clustering and TS fuzzy system are used to get the optimal acceleration value. The membership function is determined for acceleration and noise which are divided by K-means clustering and the characteristics of the maneuvering target is figured out. Divided acceleration and noise are used in the tracking algorithm to compensate computational error. While calculating expected value, the non-linearity of the maneuvering target is recognized as linear one by dividing acceleration and the capability of Kalman filter is kept in the filtering process. The error for the non-linearity is compensated by approximated acceleration. The proposed system improves the adaptiveness and the robustness by adjusting the parameters in the membership function of fuzzy system. Procedures of the proposed algorithm can be implemented as an on-line system. Finally, some examples are provided to show the effectiveness of the proposed algorithm.

Camera Motion Estimation using Geometrically Symmetric Points in Subsequent Video Frames (인접 영상 프레임에서 기하학적 대칭점을 이용한 카메라 움직임 추정)

  • Jeon, Dae-Seong;Mun, Seong-Heon;Park, Jun-Ho;Yun, Yeong-U
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.2
    • /
    • pp.35-44
    • /
    • 2002
  • The translation and the rotation of camera occur global motion which affects all over the frame in video sequence. With the video sequences containing global motion, it is practically impossible to extract exact video objects and to calculate genuine object motions. Therefore, high compression ratio cannot be achieved due to the large motion vectors. This problem can be solved when the global motion compensated frames are used. The existing camera motion estimation methods for global motion compensation have a large amount of computations in common. In this paper, we propose a simple global motion estimation algorithm that consists of linear equations without any repetition. The algorithm uses information .of symmetric points in the frame of the video sequence. The discriminant conditions to distinguish regions belonging to distant view from foreground in the frame are presented. Only for the distant view satisfying the discriminant conditions, the linear equations for the panning, tilting, and zooming parameters are applied. From the experimental results using the MPEG test sequences, we can confirm that the proposed algorithm estimates correct global motion parameters. Moreover the real-time capability of the proposed technique can be applicable to many MPEG-4 and MPEG-7 related areas.

BVOCs Estimates Using MEGAN in South Korea: A Case Study of June in 2012 (MEGAN을 이용한 국내 BVOCs 배출량 산정: 2012년 6월 사례 연구)

  • Kim, Kyeongsu;Lee, Seung-Jae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.1
    • /
    • pp.48-61
    • /
    • 2022
  • South Korea is quite vegetation rich country which has 63% forests and 16% cropland area. Massive NOx emissions from megacities, therefore, are easily combined with BVOCs emitted from the forest and cropland area, then produce high ozone concentration. BVOCs emissions have been estimated using well-known emission models, such as BEIS (Biogenic Emission Inventory System) or MEGAN (Model of Emission of Gases and Aerosol from Nature) which were developed using non-Korean emission factors. In this study, we ran MEGAN v2.1 model to estimate BVO Cs emissions in Korea. The MO DIS Land Cover and LAI (Leaf Area Index) products over Korea were used to run the MEGAN model for June 2012. Isoprene and Monoterpenes emissions from the model were inter-compared against the enclosure chamber measurements from Taehwa research forest in Korea, during June 11 and 12, 2012. For estimating emission from the enclosed chamber measurement data. The initial results show that isoprene emissions from the MEGAN model were up to 6.4 times higher than those from the enclosure chamber measurement. Monoterpenes from enclosure chamber measurement were up to 5.6 times higher than MEGAN emission. The differences between two datasets, however, were much smaller during the time of high emissions. More inter-comparison results and the possibilities of improving the MEGAN modeling performance using local measurement data over Korea will be presented and discussed.