• Title/Summary/Keyword: 실시간 얼굴영역인식

Search Result 104, Processing Time 0.03 seconds

Real-time Hand Pose Recognition Using HLF (HLF(Haar-like Feature)를 이용한 실시간 손 포즈 인식)

  • Kim, Jang-Woon;Kim, Song-Gook;Hong, Seok-Ju;Jang, Han-Byul;Lee, Chil-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.897-902
    • /
    • 2007
  • 인간과 컴퓨터간의 전통적인 인터페이스는 인간이 요구하는 다양한 인터페이스를 제공하지 못한다는 점에서 점차 사용하기 불편하게 되었고 이는 새로운 형태의 인터페이스에 대한 요구로 이어지게 되었다. 본 논문에서는 이러한 추세에 맞추어 카메라를 통해 인간의 손 제스처를 인식하는 새로운 인터페이스를 연구하였다. 손은 자유도가 높고 3차원의 view direction에 의해 형상이 매우 심하게 변한다. 따라서 윤곽선 기반방법과 같은 2차원으로 투영된 영상에서 contour나 edge의 정보로 손 제스처를 인식하는 데는 한계가 있다. 그러나 모델기반 방법은 3차원 정보를 이용하기 때문에 손 제스처를 인식하는데 좋으나 계산량이 많아 실시간으로 처리하기가 쉽지 않다. 이러한 문제점을 해결하기 위해 손 형상에 대한 대규모 데이터베이스를 구성하고 정규화된 공간에서 Feature 간의 연관성을 파악하여 훈련 데이터 모델을 구성하여 비교함으로써 실시간으로 손 포즈를 구별할 수 있다. 이러한 통계적 학습 기반의 알고리즘은 다양한 데이터와 좋은 feature의 검출이 최적의 성능을 구현하는 것과 연관된다. 따라서 배경으로부터 노이즈를 최대한 줄이기 위해 피부의 색상 정보를 이용하여 손 후보 영역을 검출하고 검출된 후보 영역으로부터 HLF(Haar-like Feature)를 이용하여 손 영역을 검출한다. 검출된 손 영역으로부터 패턴 분류 과정을 거쳐 손 포즈를 인식 하게 된다. 패턴 분류 과정은 HLF를 이용하여 손 포즈를 인식하게 되는데 미리 학습된 각 포즈에 대한 HLF를 이용하여 손 포즈를 인식하게 된다. HLF는 Violar가 얼굴 검출에 적용한 것으로 얼굴 검출에 좋은 결과를 보여 주었으며, 이는 적분 이미지로부터 추출한 HLF를 이용한 Adaboost 학습 알고리즘을 사용하였다. 본 논문에서는 피부색의 색상 정보를 이용 배경과 손 영상을 최대한 분리하여 배경의 대부분이 Adaboost-Haar Classifier의 첫 번째 스테이지에서 제거되는 방법을 이용하여 그 성능을 더 향상 시켜 손 형상 인식에 적용하였다.

  • PDF

Real-time Face Tracking using the Relative Similarity of Local Area (지역적영역의 상대적 유사도를 이용한 실시간 얼굴추적)

  • Lee, JeaHyuk;Shin, DongWha;Kim, HyunJung;Weon, ILYong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1408-1411
    • /
    • 2013
  • 객체의 인식과 추적은 컴퓨터 비전 및 영상처리 분야에서 연구가 활발히 진행되고 있다. 특히 얼굴을 인식하고 추적하는 기술은 많은 분야에서 응용될 수 있다. 기존에 연구되어 온 기준 프레임과 관찰 프레임 사이의 차를 이용하여 객체를 인식하고 추적하는 방식은 관찰 대상이 다수인 경우 동일성을 확보하기에는 어려움이 많다. 따라서 본 논문에서는 각각의 프레임에서 빠르게 얼굴 영역을 인식하고, 독립적으로 인지된 얼굴들의 동일성을 연결하는 방법을 제시한다. 제안된 방법의 유용성은 실험으로 검증하였으며, 어느 정도 의미 있는 결과를 관찰할 수 있었다.

A Facial Feature Detection using Light Compensation and Appearance-based Features (빛 보상과 외형 기반의 특징을 이용한 얼굴 특징 검출)

  • Kim Jin-Ok
    • Journal of Internet Computing and Services
    • /
    • v.7 no.3
    • /
    • pp.143-153
    • /
    • 2006
  • Facial feature detection is a basic technology in applications such as human computer interface, face recognition, face tracking and image database management. The speed of feature detection algorithm is one of the main issues for facial feature detection in real-time environment. Primary factors like a variation by lighting effect, location, rotation and complex background give an effect to decrease a detection ratio. A facial feature detection algorithm is proposed to improve the detection ratio and the detection speed. The proposed algorithm detects skin regions over the entire image improved by CLAHE, an algorithm for light compensation against varying lighting conditions. To extract facial feature points on detected skin regions, it uses appearance-based geometrical characteristics of a face. Since the method shows fast detection speed as well as efficient face-detection ratio, it can be applied in real-time application to face tracking and face recognition.

  • PDF

Face Recognition and Temperature Measurement Access Control System using Machine Learning (기계학습을 활용한 얼굴 인식 및 체온 측정 출입관리 시스템)

  • Kim, Jin-Ha;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.197-202
    • /
    • 2021
  • In order to prevent the spread of COVID 19, the body temperature is measured when entering the building. In this paper, we try to certify the entry of the building through real-time face recognition based on the face learning data of visitors. The number of learning images are designed to be automatically labeled to increase facial recognition. Also, it designates the forehead region from the face region as the region of interest for accurate temperature measurements. In the future, we plan to establish a database that stores the temperature, access time, and information of visitors.

Real-Time face detection using the Skin color and Haar-like feature (피부색과 Haar-like feature를 이용한 실시간 얼굴검출)

  • Jeong, Joong-Gyo;Park, Sang-Sung;Jang, Dong-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.4 s.36
    • /
    • pp.113-121
    • /
    • 2005
  • Face detection in real-time video constitutes one of the major trend in face recognition. In this paper, we propose a face detection algorithm using the skin color and Haar-like feature in real-time video. The proposed algorithm is followed by three sequences; First, moving objects are detected by difference-method in YCbCr coordinates, and then by using Haar-like features, face candidate regions of the moving objects is selected. Finally we extract the most possible face candidates by comparing the pixel values of face candidates with the skin color. In order to prevent a mistake. we use similar features or skin color to detect a face by selecting a adaptive ROI and improve the processing speed in real-time video. The computer simulation shows the validity of the proposed method that the processing speed is improved by 30% than previous works and the detection success rate is 96.8%.

  • PDF

3D Face Recognition in the Multiple-Contour Line Area Using Fuzzy Integral (얼굴의 등고선 영역을 이용한 퍼지적분 기반의 3차원 얼굴 인식)

  • Lee, Yeung-Hak
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.4
    • /
    • pp.423-433
    • /
    • 2008
  • The surface curvatures extracted from the face contain the most important personal facial information. In particular, the face shape using the depth information represents personal features in detail. In this paper, we develop a method for recognizing the range face images by combining the multiple face regions using fuzzy integral. For the proposed approach, the first step tries to find the nose tip that has a protrusion shape on the face from the extracted face area and has to take into consideration of the orientated frontal posture to normalize. Multiple areas are extracted by the depth threshold values from reference point, nose tip. And then, we calculate the curvature features: principal curvature, gaussian curvature, and mean curvature for each region. The second step of approach concerns the application of eigenface and Linear Discriminant Analysis(LDA) method to reduce the dimension and classify. In the last step, the aggregation of the individual classifiers using the fuzzy integral is explained for each region. In the experimental results, using the depth threshold value 40 (DT40) show the highest recognition rate among the regions, and the maximum curvature achieves 98% recognition rate, incase of fuzzy integral.

  • PDF

Facial Expression Recognition using Face Alignment and AdaBoost (얼굴정렬과 AdaBoost를 이용한 얼굴 표정 인식)

  • Jeong, Kyungjoong;Choi, Jaesik;Jang, Gil-Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.193-201
    • /
    • 2014
  • This paper suggests a facial expression recognition system using face detection, face alignment, facial unit extraction, and training and testing algorithms based on AdaBoost classifiers. First, we find face region by a face detector. From the results, face alignment algorithm extracts feature points. The facial units are from a subset of action units generated by combining the obtained feature points. The facial units are generally more effective for smaller-sized databases, and are able to represent the facial expressions more efficiently and reduce the computation time, and hence can be applied to real-time scenarios. Experimental results in real scenarios showed that the proposed system has an excellent performance over 90% recognition rates.

Passports Recognition using ART2 Algorithm and Face Verification (ART2 알고리즘과 얼굴 인증을 이용한 여권 인식)

  • Jang, Do-Won;Kim, Kwang-Baek
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.05a
    • /
    • pp.190-197
    • /
    • 2005
  • 본 논문에서는 출입국자 관리의 효율성과 체계적인 출입국 관리를 위하여 여권 코드를 자동으로 인식하고 위조 여권을 판별할 수 있는 여권 인식 및 얼굴 인증 방법을 제안한다. 여권 이미지는 기울어진 상태로 스캔되어 획득되어질 수도 있으므로 기울기 보정은 문자 분할 및 인식, 얼굴 인증에 있어 매우 중요하다. 따라서 본 논문에서는 여권 영상을 스미어링한 후, 추출된 문자열 중에서 가장 긴 문자열을 선택하고 이 문자열의 좌측과 우측 부분의 두께 중심을 연결하는 직선과 수평선과의 기울기를 이용하여 여권 여상에 대한 각도 보정을 수행한다. 여권 코드 추출은 소벨 연산자와 수평 스미어링, 8방향 윤곽선 추적 알고리즘을 적용하여 여권 코드의 문자열 영역을 추출하고, 추출된 여권 코드 문자열 영역에 대해 반복 이지화 방법을 적용하여 코드의 문자열 영역을 이진화한다. 이진화된 문자열 영역에 대해 CDM 마스크를 적용하여 문자열의 코드들을 복원하고 8방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출한다. 추출된 개별 코드는 ART2 알고리즘을 적용하여 인식한다. 얼굴 인증을 위해 템플릿 매칭 알고리즘을 이용하여 얼굴 템플릿 데이터베이스를 구축하고 여권에서 추출된 얼굴 영역과의 유사도 측정을 통하여 여권 얼굴 영역의 위조 여부를 판별한다. 얼굴 인증을 위해서 Hue, YIQ-I, YCbCr-Cb 특징들의 유사도를 종합적으로 분석하여 얼굴 인증에 적용한다. 제안된 여권 인식 및 얼굴 인증 방법의 성능을 평가를 위하여 원본 여권에 얼굴 부분을 위조한 여권과 노이즈, 대비 증가 및 감소, 밝기 증가 및 감소 및 여권 영상을 흐리게 하여 실험한 결과, 제안된 방법이 여권 코드 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다.권 영상에서 획득되어진 얼굴 영상의 특징벡터와 데이터베이스에 있는 얼굴 영상의 특징벡터와의 거리 값을 계산하여 사진 위조 여부를 판별한다. 제안된 여권 인식 및 얼굴 인증 방법의 성능을 평가를 위하여 원본 여권에서 얼굴 부분을 위조한 여권과 기울어진 여권 영상을 대상으로 실험한 결과, 제안된 방법이 여권의 코드 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다.진행하고 있다.태도와 유아의 창의성간에는 상관이 없는 것으로 나타났고, 일반 유아의 아버지 양육태도와 유아의 창의성간의 상관에서는 아버지 양육태도의 성취-비성취 요인에서와 창의성제목의 추상성요인에서 상관이 있는 것으로 나타났다. 따라서 창의성이 높은 아동의 아버지의 양육태도는 일반 유아의 아버지와 보다 더 애정적이며 자율성이 높지만 창의성이 높은 아동의 집단내에서 창의성에 특별한 영향을 더 미치는 아버지의 양육방식은 발견되지 않았다. 반면 일반 유아의 경우 아버지의 성취지향성이 낮을 때 자녀의 창의성을 향상시킬 수 있는 것으로 나타났다. 이상에서 자녀의 창의성을 향상시키는 중요한 양육차원은 애정성이나 비성취지향성으로 나타나고 있어 정서적인 측면의 지원인 것으로 밝혀졌다.징에서 나타나는 AD-SR맥락의 반성적 탐구가 자주 나타났다. 반성적 탐구 척도 두 그룹을 비교 했을 때 CON 상호작용의 특징이 낮게 나타나는 N그룹이 양적으로 그리고 내용적으로 더 의미 있는 반성적 탐구를 했다용을 지원하는 홈페이지를 만들어 자료 제공 사이트에 대한 메타 자료를 데이터베이스화했으며 이를 통해 학생들이 원하는 실시간 자료를 검색하여 찾을 수 있고 홈페이지를 방분했을 때 이해하기 어려운 그래프나 각 홈페이지가 제공하는 자료들에 대한 처리 방법을 도움말로 제공받을 수 있게 했다. 실

  • PDF

Real-Time Face Recognition Based on Subspace and LVQ Classifier (부분공간과 LVQ 분류기에 기반한 실시간 얼굴 인식)

  • Kwon, Oh-Ryun;Min, Kyong-Pil;Chun, Jun-Chul
    • Journal of Internet Computing and Services
    • /
    • v.8 no.3
    • /
    • pp.19-32
    • /
    • 2007
  • This paper present a new face recognition method based on LVQ neural net to construct a real time face recognition system. The previous researches which used PCA, LDA combined neural net usually need much time in training neural net. The supervised LVQ neural net needs much less time in training and can maximize the separability between the classes. In this paper, the proposed method transforms the input face image by PCA and LDA sequentially into low-dimension feature vectors and recognizes the face through LVQ neural net. In order to make the system robust to external light variation, light compensation is performed on the detected face by max-min normalization method as preprocessing. PCA and LDA transformations are applied to the normalized face image to produce low-level feature vectors of the image. In order to determine the initial centers of LVQ and speed up the convergency of the LVQ neural net, the K-Means clustering algorithm is adopted. Subsequently, the class representative vectors can be produced by LVQ2 training using initial center vectors. The face recognition is achieved by using the euclidean distance measure between the center vector of classes and the feature vector of input image. From the experiments, we can prove that the proposed method is more effective in the recognition ratio for the cases of still images from ORL database and sequential images rather than using conventional PCA of a hybrid method with PCA and LDA.

  • PDF

Face Recognition System using Eigenface on Embedded System (임베디드 시스템에서 Eigenface를 이용한 얼굴인식 시스템 설계)

  • Lee Soo-Il;Kwon Ki-Hyeon;Byun Hyung-Gi;Kim Duk-Eun;Choi Hyung-Jin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.557-560
    • /
    • 2006
  • 최근 들어 정보통신 분야의 기술이 급격히 발전함에 따라 컴퓨터 사용의 증가와 임베디드 시스템 및 사회 각 분야에서 보안에 대한 의식이 점점 높아져 가고 있다. 각 분야에서 신체 정보를 이용한 연구들이 활발히 이루어지고 있는데 본 논문에서는 USB 캠을 이용한 실시간 얼굴 인식 방법에 대해서 제안한다. 카메라를 이용하여 얼굴을 인식하는 방법은 현재까지 여러 가지 방법들이 제시되어 왔지만 일반 pc에서 쓰는 USB 캠을 사용하여 제약 조건 없고 안정적인 인식 방법은 아직까지 나와 있지 않다. 얼굴영역을 주성분 변수로 변환하여 영상의 명암, 얼굴위치, 얼굴의 영역을 추출할 수 있는 기존의 시스템들이 많이 연구되어 왔는데 본 논문에서 제안된 방법에서는 일상생활에서 흔히 쓰는 USB 캠을 사용하여 기존의 CCTV와 같은 고가의 하드웨어를 대체하며 보다 효율적인 성능을 위하여 얼굴을 식별하기 위해 LVQ, FCMA, RBF 알고리즘을 적용한 시스템을 설계한다.

  • PDF