• Title/Summary/Keyword: 실시간추적

Search Result 1,564, Processing Time 0.03 seconds

Data Fusion and Pursuit-Evasion Simulations for Position Evaluation of Tactical Objects (전술객체 위치 모의를 위한 데이터 융합 및 추적 회피 시뮬레이션)

  • Jin, Seung-Ri;Kim, Seok-Kwon;Son, Jae-Won;Park, Dong-Jo
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.209-218
    • /
    • 2010
  • The aim of the study on the tactical object representation techniques in synthetic environment is on acquiring fundamental techniques for detection and tracking of tactical objects, and evaluating the strategic situation in the virtual ground. In order to acquire these techniques, there need the tactical objects' position tracking and evaluation, and an inter-sharing technique between tactical models. In this paper, we study the algorithms on the sensor data fusion and coordinate conversion, proportional navigation guidance(PNG), and pursuit-evasion technique for engineering and higher level models. Additionally, we simulate the position evaluation of tractical objects using the pursuit and evasion maneuvers between a submarine and a torpedo.

Merge and Split of Players under MeanShift Tracking in Baseball Videos (야구 비디오에 대한 민시프트 추적 하에서 선수 병합 분리)

  • Choi, Hyeon-yeong;Hong, Sung-hwa;Ko, Jae-pil
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.119-125
    • /
    • 2017
  • In this paper, we propose a method that merges and splits players in the MeanShift tracking framework. The MeanShift tracking moves the center of tracking window to the maximum probability location given the target probability distribution. This tracking method has been widely used for real-time tracking problems because of its fast processing speed. However, it hardly handles occlusions in multiple object tracking systems. Occlusions can be usually solved by applying data association methods. In this paper, we propose a method that can be applied before data association methods. The proposed method automatically merges and splits the overlapped players by adjusting the each player's tracking map. We have compared the tracking performance of the MeanSfhit tracking algorithm and the proposed method.

Robust 2D Feature Tracking in Long Video Sequences (긴 비디오 프레임들에서의 강건한 2차원 특징점 추적)

  • Yoon, Jong-Hyun;Park, Jong-Seung
    • The KIPS Transactions:PartB
    • /
    • v.14B no.7
    • /
    • pp.473-480
    • /
    • 2007
  • Feature tracking in video frame sequences has suffered from the instability and the frequent failure of feature matching between two successive frames. In this paper, we propose a robust 2D feature tracking method that is stable to long video sequences. To improve the stability of feature tracking, we predict the spatial movement in the current image frame using the state variables. The predicted current movement is used for the initialization of the search window. By computing the feature similarities in the search window, we refine the current feature positions. Then, the current feature states are updated. This tracking process is repeated for each input frame. To reduce false matches, the outlier rejection stage is also introduced. Experimental results from real video sequences showed that the proposed method performs stable feature tracking for long frame sequences.

Tiny Drone Tracking with a Moving Camera (동적 카메라 환경에서의 소형 드론 추적 방법)

  • Son, Sohee;Jeon, Jinwoo;Lee, Injae;Cha, Jihun;Choi, Haechul
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.802-812
    • /
    • 2019
  • With the rapid development in the field of unmanned aerial vehicles(UAVs) and drones, higher request to development of a surveillance system for a drone is putting forward. Since surveillance systems with fixed cameras have a limited range, a development of surveillance systems with a moving camera applicable to PTZ(Pan-Tilt-Zoom) cameras is required. Selecting the features for object plays a critical role in tracking, and the object has to be represented by their shapes or appearances. Considering these conditions, in this paper, an object tracking method with optical flow is introduced to track a tiny drone with a moving camera. In addition, a tracking method combined with kalman filter is proposed to track continuously even when tracking is failed. Experiments are tested on sequences which have a target from the minimal 12 pixels to the maximal 56337 pixels, the proposed method achieves average precision of 175% improvement. Also, experimental results show the proposed method tracks a target which has a size of 12pixels.

A Real Time Location Based IoT Messaging System using MQTT (MQTT 활용 실시간 위치 기반 IoT 메시징 시스템)

  • Jung, In-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.27-36
    • /
    • 2018
  • In this paper, we design and implement a real time IoT messaging system that can collect location information of moving vehicles and pedestrians in real time using MQTT protocol and provides location based information service in administrative area. We implemented MQTT based IoT device for vehicle location information collection and communication and MQTT based smartphone application for pedestrian location information service. IoT clients can send messages to the server in administrative units by using the MQTT Topic which is equal to administrative names. The SLIMS (Seoul Location based IoT Messaging System) implemented in this study is able to analyze the real time traffic volume of pedestrians and vehicles by tracking clients. It also can deliver messages to clients based on coordinate range. SLIMS can be used as a real-time location-based information service for large-scale IoT devices such as real-time flow population and vehicle traffic analysis and location-based message delivery.

Real-Time Head Tracking using Adaptive Boosting in Surveillance (서베일런스에서 Adaptive Boosting을 이용한 실시간 헤드 트래킹)

  • Kang, Sung-Kwan;Lee, Jung-Hyun
    • Journal of Digital Convergence
    • /
    • v.11 no.2
    • /
    • pp.243-248
    • /
    • 2013
  • This paper proposes an effective method using Adaptive Boosting to track a person's head in complex background. By only one way to feature extraction methods are not sufficient for modeling a person's head. Therefore, the method proposed in this paper, several feature extraction methods for the accuracy of the detection head running at the same time. Feature Extraction for the imaging of the head was extracted using sub-region and Haar wavelet transform. Sub-region represents the local characteristics of the head, Haar wavelet transform can indicate the frequency characteristics of face. Therefore, if we use them to extract the features of face, effective modeling is possible. In the proposed method to track down the man's head from the input video in real time, we ues the results after learning Harr-wavelet characteristics of the three types using AdaBoosting algorithm. Originally the AdaBoosting algorithm, there is a very long learning time, if learning data was changes, and then it is need to be performed learning again. In order to overcome this shortcoming, in this research propose efficient method using cascade AdaBoosting. This method reduces the learning time for the imaging of the head, and can respond effectively to changes in the learning data. The proposed method generated classifier with excellent performance using less learning time and learning data. In addition, this method accurately detect and track head of person from a variety of head data in real-time video images.

Deep Learning based Fish Object Detection and Tracking for Smart Aqua Farm (스마트 양식을 위한 딥러닝 기반 어류 검출 및 이동경로 추적)

  • Shin, Younghak;Choi, Jeong Hyeon;Choi, Han Suk
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.552-560
    • /
    • 2021
  • Currently, the domestic aquaculture industry is pursuing smartization, but it is still proceeding with human subjective judgment in many processes in the aquaculture stage. The prerequisite for the smart aquaculture industry is to effectively grasp the condition of fish in the farm. If real-time monitoring is possible by identifying the number of fish populations, size, pathways, and speed of movement, various forms of automation such as automatic feed supply and disease determination can be carried out. In this study, we proposed an algorithm to identify the state of fish in real time using underwater video data. The fish detection performance was compared and evaluated by applying the latest deep learning-based object detection models, and an algorithm was proposed to measure fish object identification, path tracking, and moving speed in continuous image frames in the video using the fish detection results. The proposed algorithm showed 92% object detection performance (based on F1-score), and it was confirmed that it effectively tracks a large number of fish objects in real time on the actual test video. It is expected that the algorithm proposed in this paper can be effectively used in various smart farming technologies such as automatic feed feeding and fish disease prediction in the future.

Development of CCTV Cooperation Tracking System for Real-Time Crime Monitoring (실시간 범죄 모니터링을 위한 CCTV 협업 추적시스템 개발 연구)

  • Choi, Woo-Chul;Na, Joon-Yeop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.546-554
    • /
    • 2019
  • Typically, closed-circuit television (CCTV) monitoring is mainly used for post-processes (i.e. to provide evidence after an incident has occurred), but by using a streaming video feed, machine-based learning, and advanced image recognition techniques, current technology can be extended to respond to crimes or reports of missing persons in real time. The multi-CCTV cooperation technique developed in this study is a program model that delivers similarity information about a suspect (or moving object) extracted via CCTV at one location and sent to a monitoring agent to track the selected suspect or object when he, she, or it moves out of range to another CCTV camera. To improve the operating efficiency of local government CCTV control centers, we describe here the partial automation of a CCTV control system that currently relies upon monitoring by human agents. We envisage an integrated crime prevention service, which incorporates the cooperative CCTV network suggested in this study and that can easily be experienced by citizens in ways such as determining a precise individual location in real time and providing a crime prevention service linked to smartphones and/or crime prevention/safety information.

An Improved Adaptive Background Mixture Model for Real-time Object Tracking based on Background Subtraction (배경 분리 기반의 실시간 객체 추적을 위한 개선된 적응적 배경 혼합 모델)

  • Kim Young-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.187-194
    • /
    • 2005
  • The background subtraction method is mainly used for the real-time extraction and tracking of moving objects from image sequences. In the outdoor environment, there are many changeable environment factors such as gradually changing illumination, swaying trees and suddenly moving objects , which are to be considered for an adaptive processing. Normally, GMM(Gaussian Mixture Model) is used to subtract the background by considering adaptively the various changes in the scenes, and the adaptive GMMs improving the real-time Performance were Proposed and worked. This paper, for on-line background subtraction, employed the improved adaptive GMM, which uses the small constant for learning rate a and is not able to speedily adapt the suddenly movement of objects, So, this paper Proposed and evaluated the dynamic control method of a using the adaptive selection of the number of component distributions and the global variances of pixel values.

  • PDF

A Real-time Interactive Shadow Avatar with Facial Emotions (감정 표현이 가능한 실시간 반응형 그림자 아바타)

  • Lim, Yang-Mi;Lee, Jae-Won;Hong, Euy-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.4
    • /
    • pp.506-515
    • /
    • 2007
  • In this paper, we propose a Real-time Interactive Shadow Avatar(RISA) which can express facial emotions changing as response of user's gestures. The avatar's shape is a virtual Shadow constructed from the real-time sampled picture of user's shape. Several predefined facial animations overlap on the face area of the virtual Shadow, according to the types of hand gestures. We use the background subtraction method to separate the virtual Shadow, and a simplified region-based tracking method is adopted for tracking hand positions and detecting hand gestures. In order to express smooth change of emotions, we use a refined morphing method which uses many more frames in contrast with traditional dynamic emoticons. RISA can be directly applied to the area of interface media arts and we expect the detecting scheme of RISA would be utilized as an alternative media interface for DMB and camera phones which need simple input devices, in the near future.

  • PDF