• Title/Summary/Keyword: 실물차량 충돌시험

Search Result 18, Processing Time 0.025 seconds

Impact Conditions of Performance Evaluation, and Development of High-Performance Roadside Barrier for Longitudinal Barriers in Smart Highway (스마트하이웨이 종방향 베리어 성능평가 충돌조건과 고성능 노측용 베리어 개발)

  • Kim, Dong-Seong;Kim, Kee-Dong;Ko, Man-Gi;Jang, Dae-Young
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.2
    • /
    • pp.59-67
    • /
    • 2011
  • To minimize the degree of damage in the SMART highway's punctuality and safety occurred from the car-barrier collisions, the impact conditions for longitudinal barriers in SMART highway was determined to be significantly larger than the existing maximum impact conditions. Results from computer simulation runs show that the existing domestic highest-performance roadside barrier did not satisfy the suggested impact conditions. The newly developed N-class barrier designed with computer simulation model and verified by full-scale crash tests has satisfied the SMART highway impact conditions in terms of occupant safety indexes and structural adequacy.

A Study on Development & Establishment of Performance Evaluation Criteria for Guardrail End Treatments (노측 가드레일용 단부처리시설 성능평가기준 정립 및 개발)

  • Joo, Jae-Woong;Kum, Ki-Jung;Park, Je-Jin;Jang, Dae-Young
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.123-134
    • /
    • 2008
  • Since the end treatments of guardrails installed on domestic roads have the shapes which can easily penetrate and turnover a vehicle, the occupant can be subjected to severe injury when a vehicle impacts the end treatments. In this study, the criteria of performance evaluation for end treatments are suggested which are suitable to domestic road circumstances. Based on the investigation for the installation and studies instances of end treatments, the mechanism of end treatments is examined and the new end treatment suitable to domestic road circumstances is suggested. The suggested end treatment was verified by computer simulation using d LS-DYNA programs and satisfied the suggested performance evaluation criteria for end treatments. And the developed end treatment was verified by full-scale vehicle crash test and satisfied the following three primary appraisal factors of the suggested performance evaluation criteria for end treatments; occupant risk criteria, structural adequacy, and after-collision vehicle trajectory. This study is the first to develop end treatments considering the occupant safety in Korea. Therefore, If the developed end treatments is installed on roads and highways, it can be expected that it will reduce the grave situation of end treatment accidents and increase the safety of roads.

  • PDF

Development of a Crash Cushion Using the Frictional and Inertial Energy by Computer Simulation (컴퓨터 시뮬레이션에 의한 관성과 마찰 에너지를 이용하는 충격흡수시설의 개발)

  • Kim, Dong-Seong;Kim, Kee-Dong;Ko, Man-Gi;Kim, Kwang-Ju
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.2
    • /
    • pp.23-30
    • /
    • 2009
  • Crash cushions are protective devices that prevent errant vehicles from impacting on fixed objects. This function is accomplished by gradually decelerating a vehicle to a safe stop in a relatively short distance. Commonly used crash cushions generally employ one of two concepts to accomplish this function. The first concept involves the absorption of the kinetic energy of a moving vehicle by crushable or plastically deformable materials and the other one involves the transfer of the momentum of a moving vehicle to an expendable mass of material located in the vehicle's path. Crash cushions using the first concept are generally referred to as compression crash cushions and crash cushions using the other concept are generally referred to as inertial crash cushion. The objective of this research is the development of a compression-type crash cushion by employing the two concepts simultaneously. To minimize the number of full-scale crash tests for the development of the crash cushion, preliminary design guide considering inertial and frictional energy absorption was constructed and computer simulation was performed. LS-DYNA program, which is most widely used to analyze roadside safety features, was used for the computer simulation. The developed crash cushion satisfied the safety evaluation criteria for various impact conditions of CC2 performance level in the Korean design guide.

Performance Evaluation for All-In-One Construction Method of Curbstone and Gutter Using Formwork Rail and Jig (거푸집 레일과 지그를 이용한 경계석 및 측구의 일체형 시공법에 대한 성능평가)

  • Choi, Jae-Jin;Ko, Man-Gi;Kim, Kyoung-Ju;Choi, Khyung-Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.525-534
    • /
    • 2010
  • A road curbstone is a structure installed at the boundary of the sidewalk and the street with the objectives of road drainage, drawing attention and such. The current general construction method of curbstones places foundation concrete for the curbstones first, waits until the concrete reaches the strength to support the curbstones, places the curbstones on top, and then places the gutter and rear filling concrete. Such method has the issues of poor compaction and weakened bond strength of concrete due to split placing of concrete, and causes the curbstones to easily separate due to vehicle impact or earth pressure, in turn creating maintenance costs and spoiling the aesthetics. To improve such conventional construction methods, an all-in-one method was developed using formwork rail and jig where both the curbstones and gutter can be worked at the same time, and to evaluate the structural performance, static tests of lateral loading test, pullout test, and bending test were executed, and dynamic tests such as pendulum test and actual vehicle impact test were executed. In all tests, the all-in-one construction method using formwork rail and jig was shown to be superior to the conventional construction method by the increase of construction quality and bond strength of concrete.

Evaluation of the Protection Performance of SB4 Class Concrete Barrier with Anti-Glare Function (SB4 등급 방현기능 콘크리트 방호울타리의 방호성능 평가)

  • Joo, Bongchul;Hong, Kinam;Yun, Junghyun;Lee, Jaeha;Kim, Jungho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.93-102
    • /
    • 2021
  • This paper describes the process of developing a concrete median barrier of SB4 grade with anti-glare function. The development section has a height and width of 1,270mm and 560mm, respectively. A wire mesh is placed in the center of the cross section to improve the protection performance. Collision analysis predicted that this section satisfies the strength and occupant protection performance, and that no damage to the barrier occurs. In the actual collision test, it was confirmed that this section satisfies the strength and occupant protection performance. However, damage was observed on two concrete barrier when the truck crashed. In order to improve the accuracy of the collision analysis of the concrete barrier in the future, it is considered that a study on the model development and continuous collision analysis method for domestic commercial vehicles should be carried out.

A Study on Driving Safety Evaluations Using Full Scale Crash Test Data of Curb (연석의 실물차량 충돌시험 데이터를 이용한 주행안전성 평가에 관한 연구)

  • Kim, Jong-Min;Noh, Kwan-Sub;Kim, Jang-Wook;Byeon, Ji-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.98-104
    • /
    • 2012
  • Current [Guideline for Installation and Management of Sidewalks and Safety Facilities on Roads] suggests that the types of curbs should be Barrier curb ($85^{\circ}$). Although Barrier curbs ($90^{\circ}$) were not specified in the guideline. The curbs installed on the roads currently are Barrier curbs ($90^{\circ}$) which are not specified in the installation standard. Therefore, it is critical to prepare for the installation standard of curbs by researching types of curbs and driving safety. This research have assessed the driving safety throughout Full Scale Crash Test according to type of curbs (Barrier curbs ($85^{\circ}$) and Barrier curbs ($90^{\circ}$)). Barrier curbs ($90^{\circ}$) showed higher figure in Theoretical head Impact Velocity, Post-impact Head Deceleration, Vehicle Damage when Crash, Passenger's Wounds Severity, and every other items than Barrier curbs ($85^{\circ}$). Barrier curbs ($85^{\circ}$) were found to have better Occupant Safety Index. Analysis of Behavior Using Full-Scale Crash Test showed difference depending on the Impact Condition between Barrier curbs ($85^{\circ}$) and Barrier curbs ($90^{\circ}$). Generally, Barrier curbs ($85^{\circ}$) were superior than Barrier curbs ($90^{\circ}$) in terms of protecting the passengers and vehicle damages. When an impact angle increases, Acceleration of Vehicle, Variations of Speed, and Contact Relationship between Wheels and Curbs, two types of curb showed similarity. However, if an impact of an angle decreases, Barrier Curbs ($85^{\circ}$) showed excellence in Driving Safety such as Acceleration of Vehicle, Variations of Speed, and Contact Relationship between Wheels and Curbs.

Performance Assessment for Rockfall Protection Systems II: Performance Assessment (낙석방지울타리의 성능평가 II: 성능평가)

  • Kim, Kee Dong;Ko, Man Gi;Kim, Dal Sung;Han, Ki Jang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.49-61
    • /
    • 2015
  • This is the second of two companion papers that describe the performance assessment for flexible rockfall protection systems. Described in a companion paper is the criteria to assess the performance of flexible rockfall protection systems. In this study the performance assessment of domestic rockfall protection fences was implemented using the criteria suggested in the companion paper. It was investigated that the rockfall protection fences for express highways performed well to resist the rockfall energy of 50kJ and the deformed rockfall protection fences right after impacting would not obstruct the vehicle traffic. However, to dissipate the rockfall energy of 50kJ with the level of European standards constantly, the spacing of wireropes was adjusted to be 200mm up to the 8th wirerope from the bottom and spacing-maintainers should be extended to the 8th wirerope. It was figured out that the rockfall protection fences for general highways were required to install spacing-maintainers as those for express highways because they, which did not have spacing-maintenance members, were very prone to the penetration of rockfall even for the very small rockfall impact energies.

Performance Assessment for Rockfall Protection Systems I: Performance Assessment Criteria (낙석방지울타리의 성능평가 I: 성능평가기준)

  • Kim, Kee Dong;Ko, Man Gi;Kim, Dal Sung;Moon, Byung Gab
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.63-76
    • /
    • 2015
  • The purpose of this study is to suggest performance levels, a test method, and assessment criteria for the performance assessment to allow standardized tests for rockfall protection systems. The range of rockfall impact energy was determined by using domestic rockfall data and a total of 9 performance levels from 50kJ to 1500kJ were suggested. The performance assessment is implemented by two types of full-scale free-fall impact tests to investigate the serviceability and the maximum capacity as in European and American standards. It was considered to be reasonable that the specimens of rockfall protection systems consist of 3 spans and the concrete block of a polyhedron with 26 faces, similar to spheres, impacts at the center of a center span. Assessment criteria were constructed to investigate whether a rockfall penetrated rockfall protection systems and whether the deformed specimen encroached on the roadway or obstructed the vehicle traffic.