• Title/Summary/Keyword: 실란커플링제

Search Result 102, Processing Time 0.023 seconds

Printability of coating layer with nano silica sol for inkjet printing high-end photo paper (나노 실리카 졸을 이용한 잉크젯 프린팅용 고품질 인쇄용지 도공층의 인쇄적성)

  • Kim, Hye-Jin;Nahm, Sahn;Han, Kyu-Sung;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.352-358
    • /
    • 2019
  • In recent years, printing paper with a function of information delivery and aesthetic value has attracted a great attention with increasing market demand for coated paper that is capable of high quality printing. The coated paper for inkjet printing with high-quality of photorealistic grades requires the coating layer with a good wettability and porous surface structure in order to improve the printability of ink. In this study, the coated paper was prepared using polyvinyl alcohol (PVA) and surface treated nano silica sol with silane coupling agent. It was confirmed that the coating layer with surface treated nano silica sol showed a uniform pore distribution and flat surface roughness. Glossiness of the prepared printing paper was similar to that of commercial high quality photo paper. Especially, the coated paper with surface treated nano silica sol showed improved printability with excellent roundness of the printed dot of ink. These results indicates that the coating layer with excellent wettability and uniform pore distribution can be formed by using the nano-silica particles with improved dispersibility through the surface treatment of the silane coupling agent.

Effect of Silane Coupling Agent on Physical Properties of Polypropylene (PP)/Kenaf Fiber (KF) Felt Composites (폴리프로필렌/케나프 섬유 펠트 복합체 물성에 대한 실란커플링제의 영향)

  • Ku, Sun Gyo;Kim, Yu Shin;Kim, Dong Won;Kim, Ki Sung;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.37-42
    • /
    • 2018
  • In order to increase the compatibility of polypropylene (PP) and kenaf fiber (KF) felt, PP/KF and PP/KF/polyurethane (PU) felt composites were prepared by treating KF with three kinds of silane coupling agents. The concentration of silane coupling agents was fixed at 1 wt%. The chemical reaction between KF and silane coupling agents was confirmed by the existence of Si-O-Si and Si-O-C functional group bands appeared on FT-IR and X-ray photoelectron spectra (XPS). Thermal properties of PP/KF composites were investigated by DSC and TGA, and the thermal stability of PP/KF composites with treated KF increased. Based on tensile, flexural and impact properties of PP/KF and PP/KF/PU composites, 1-2 wt% of (3-aminopropyl)triethoxysilane (APS) contents were the optimum formulation as a compatibilizer. The tensile and flexural strength of the felt composites treated with the silane coupling agents were improved. This is mainly due to the improvement in the compatibility between PP and KF, which was confirmed by SEM images of the fractured surfaces after tension tests.

Effect of Silane Coupling Agent on Adhesion Properties between Hydrophobic UV-curable Urethane Acrylate and Acrylic PSA (소수성 UV 경화형 우레탄 아크릴레이트와 아크릴 점착제 사이의 계면 부착력 향상을 위한 에폭시 실란의 영향)

  • Noh, Jieun;Byeon, Minseon;Cho, Tae Yeun;Ham, Dong Seok;Cho, Seong-Keun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.230-236
    • /
    • 2020
  • In this study, an adhesive tape with water and impact resistance for mobile devices was developed using a UV-curable urethane acrylate based polymer as a substrate. The substrate fabricated by UV-curable materials shows hydrophobicity and poor wettability, which significantly deteriorates the interface-adhesions between the substrate and acrylic adhesive. In order to improve the interface adhesion, 3-glycidoxy-propyl trimethoxysilane (GPTMS), a silane coupling agent having epoxy functional groups, was selected and incorporated into UV-curable urethane acrylate based polymer resins in various contents. The changes of the chemical composition according to the contents of GPTMS was studied with Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) to know the surface bonding properties. Also mechanical properties of the substrate were characterized by tensile strength, gel fraction and water contact angle measurements. The peel strengths at 180° and 90° were measured to compare the adhesion between the substrate and adhesive according to the silane coupling agent contents. The mechanical strength of the urethane acrylate adhesive tape decreased as the silane coupling agent increased, but the adhesion between the substrate and adhesives increased remarkably at an appropriate content of 0.5~1 wt%.

Surface Modification of Nanofiltration Membrane with Silane Coupling Agents for Separation of Dye (실란 표면 개질된 나노복합막의 염료 분리 특성)

  • Park, Hee Min;Lim, Jee Eun;Kim, Seong Ae;Lee, Yong Taek
    • Membrane Journal
    • /
    • v.28 no.6
    • /
    • pp.414-423
    • /
    • 2018
  • In this study, the commercial nanofiltration membranes were modified with octyltrimethoxysilane(OcTMS) and (3-aminopropyl)trimethoxysilane (APTMS) to improve fouling resistance and to separate dye. The chemical structure and binding energy of elements of silane-deposited surface were analyzed using XPS analysis. And the morphology and hydrophilicity property of silane-modified NF membrane were analyzed using FE-SEM, EDX, AFM, and contact angle. The surface charge of silane-modified NF membrane was characterized by zeta potentiometer analyzer. As a result, silane-modified NF membrane improved fouling resistance about 2 times as compared with that of the commercial membrane. And the silane-modified NF membranes effectively were removed cation dye over 98%.

Improvements of Impact strength in Glass Fiber/Polypropylene Composite by Silane Coupling Agents (실란커플링제에 의한 유리섬유/폴리프로필렌 복합재료의 충격강도 증가에 관한 연구)

  • 정광보
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.43-47
    • /
    • 2001
  • Effect of coupling agent on the mechanical properties of PP/GF blend was investigated. The flexural modulus, Izod impact strength, elongation at yield and tensile strength were improved with using coupling agent. Mopological studies revealed that PP and GF were incompatible and addition of coupling agent was very effective to enhance the compatibility, result in mechanical properties.

  • PDF

Evaluation of Mechanical Property of Carbon Fiber/Polypropylene Composite According to Carbon Fiber Surface Treatment (탄소섬유 표면처리에 따른 탄소섬유/폴리프로필렌 복합재료의 기계적 물성 평가)

  • Han, Song Hee;Oh, Hyun Ju;Kim, Seong Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.791-796
    • /
    • 2013
  • In this study, the mechanical properties of a carbon fiber/polypropylene composite were evaluated according to the carbon fiber surface treatment. Carbon fiber surface treatments such as silane coupling agents and plasma treatment were performed to enhance the interfacial strength between carbon fibers and polypropylene. The treated carbon fiber surface was characterized by XPS, SEM, and single-filament tensile test. The interlaminar shear strength (ILSS) of the composite with respect to the surface treatment was determined by a short beam shear test. The test results showed that the ILSS of the plasma-treated specimen increased with the treatment time. The ILSS of the specimen treated with a silane coupling agent after plasma treatment increased by 48.7% compared to that of the untreated specimen.

Effects of Silane-treated Silica on the Cure Temperature and Mechanical Properties of Elastomeric Epoxy (실란 커플링제로 처리된 실리카가 탄성에폭시의 경화온도 및 기계적 물성에 미치는 영향)

  • Choi, Sun-Mi;Lee, Eun-Kyoung;Choi, Seo-Young
    • Elastomers and Composites
    • /
    • v.43 no.3
    • /
    • pp.147-156
    • /
    • 2008
  • In this work, epoxy/carboxyl-terminated butadiene acrylonitirile (EP/CTBN) composites were prepared by employing a reinforcing filler, silica treated with silane coupling agent in different ratio by dry and wet method. Their curing characteristics, surface free energy, interface morphologies and mechanical properties such as tensile strength and impact resistance were carefully investigated. Differential scanning calorimetry(DSC) results showed that curing temperature was lowered with the increase of silane coupling agent because of the increase of relative curing agent cotent by filling the pores of silica. Wet method was proved to be more effective for lowering curing temperature of EP/CTBN composite. In general, surface free energy and impact resistance were increased with the increase of silane coupling agent in this work. Tensile strength, however, was observed to be decreased at 4 wt% of silane coupling agent. It was found that the dry method was proved to be preferable for pretreatment of silica with coupling agent.

Effect of Surface Modification of Calcium Carbonate Nanoparticles by Octyltrimethoxysilane on the Stability of Emulsion and Foam (실란 커플링제 옥틸트리메톡시실란에 의해 표면 개질된 탄산칼슘 나노입자가 에멀젼 및 기포 안정성에 미치는 영향)

  • Lim, Jong Choo;Park, Ki Ho;Lee, Jeong Min;Shin, Hee Dong
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.386-393
    • /
    • 2022
  • In this study, the surface modification of calcium carbonate (CaCO3) nanoparticles by a silane coupling agent, octyltrimethoxysilane (OTMS), was investigated and characterized using Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) analysis. Both floating tests and contact angle measurements were also conducted to study the effect of OTMS concentration on the hydrophobicity of CaCO3 nanoparticles. It was found that the active ratio for the CaCO3 nanoparticles modified by 1 wt% of OTMS was 97.0 ± 0.5%, indicating that OTMS is a very effective silane coupling agent in enhancing the hydrophobicity of the CaCO3 nanoparticle surface. The most stable foam was generated with 1 wt% of CaCO3 nanoparticles in aqueous solutions at 1 wt% of OTMS, where the contact angle of water was found to be 91.8 ± 0.7°. It was also found that the most stable emulsion drops were formed at the same OTMS concentration. These results suggest that CaCO3 nanoparticles modified by a silane coupling agent OTMS are a powerful candidate for a foam stabilizer or an emulsifier in many industrial applications.

Effect of Surface Modification of CaCO3 Nanoparticles by a Silane Coupling Agent Propyltrimethoxysilane on the Stability of Emulsion and Foam (실란 커플링제 프로필트리메톡시실란에 의해 표면 개질된 CaCO3 나노입자가 에멀젼과 기포 안정성에 미치는 영향에 관한 연구)

  • Lee, YeJin;Park, KiHo;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.49-56
    • /
    • 2020
  • In this study, surface modification of CaCO3 nanoparticles by a silane coupling agent propyltrimethoxysilane (PTMS) was conducted and the effect of surface hydrophobicity on the stability of foam and emulsion was studied in order to test the potential applicability as a foam stabilizer or an emulsifier. The surface modification of CaCO3 nanoparticles by PTMS was confirmed by FT-IR, DSC and TGA analysis. The atomic concentration of CaCO3 particle surface treated by PTMS has been also identified by using XRD and XPS analyses. Both floating tests and contact angle measurements were also performed to examine the effect of PTMS concentration on the surface modification of CaCO3 nanoparticles.

Interfacial Fracture Behavior of Epoxy Adhesives for Electronic Components (전자부품용 에폭시 접착제의 계면 파괴 거동 연구)

  • Kang, Byoung-Un
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1479-1487
    • /
    • 2011
  • In the field of the entire electronic component industry including mobile IT products, the importance of a versatile package with the multifunctional or high capacity memories is gradually increased. Multi Chip Package which has several chips in a single package is frequently used for that purpose. In MCP, epoxy adhesive films play a major role in adhesion between the chips or between chip and substrate. A series of silane coupling agents with a functional group such as epoxy, amine, mercaptan, and isocyanate were applied to the epoxy adhesives and material properties such as wettability and reliability of the adhesives were investigated. From the results, the silane coupling agent with an epoxy functional group showed highest wettability and peel strength in epoxy adhesive. For those reasons, it lead to a superior reliability in the epoxy adhesive against interfacial fracture behaviors through moisture resistance test.