• Title/Summary/Keyword: 실내 복도

Search Result 133, Processing Time 0.029 seconds

Indoor Autonomous Driving through Parallel Reinforcement Learning of Virtual and Real Environments (가상 환경과 실제 환경의 병행 강화학습을 통한 실내 자율주행)

  • Jeong, Yuseok;Lee, Chang Woo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.26 no.4
    • /
    • pp.11-18
    • /
    • 2021
  • We propose a method that combines learning in a virtual environment and a real environment for indoor autonomous driving through reinforcement learning. In case of learning only in the real environment, it takes about 80 hours, but in case of learning in both the real and virtual environments, it takes 40 hours. There is an advantage in that it is possible to obtain optimized parameters through various experiments through fast learning while learning in a virtual environment and a real environment in parallel. After configuring a virtual environment using indoor hallway images, prior learning was carried out on the desktop, and learning in the real environment was conducted by connecting various sensors based on Jetson Xavier. In addition, in order to solve the accuracy problem according to the repeated texture of the indoor corridor environment, it was possible to determine the corridor wall object and increase the accuracy by learning the feature point detection that emphasizes the lower line of the corridor wall. As the learning progresses, the experimental vehicle drives based on the center of the corridor in an indoor corridor environment and moves through an average of 70 steering commands.

Measurement and Comparative Analysis of Propagation Characteristics in 3, 6, 10, and 17 GHz in Two Different Indoor Corridors (두 가지 서로 다른 실내 복도에서 3, 6, 10, 17 GHz의 전파 특성 측정 및 비교 분석)

  • Seong-Hun Lee;Byung-Lok Cho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1031-1040
    • /
    • 2023
  • Propagation characteristics in line-of-sight(LOS) paths in 3, 6, 10, and 17 GHz frequency bands were measured and analyzed in two different indoor corridors: second floors of Buildings D2 and E2. The measurement was designed to measure when the receiving antenna moved at 0.5 m intervals from 3 m to 30 m, while the transmission antenna was fixed. The analysis of the two indoor corridors was compared by applying basic transmission loss, root mean square (RMS) delay spread, and K-factor. For basic transmission loss, the loss coefficient of the floating intercept path loss model was higher in the indoor corridor of Building E2 than in that of Building D2. Similarly, the RMS delay spread in the time domain was greater in the indoor corridor of Building E2. However, the indoor corridor of Building D2 exhibited higher K-factor in the 3, 6, and 17 GHz bands with lower wave propagation in the 10 GHz band. Despite the 2 indoor corridors being identical, the propagation characteristics varied due to different internal structures and materials. The results provide measurement data for ITU-R Recommendations regarding various indoor environments.

Autonomous Drone Navigation in the hallway using Convolution Neural Network (실내 복도환경에서의 컨벌루션 신경망을 이용한 드론의 자율주행 연구)

  • Jo, Jeong Won;Lee, Min Hye;Nam, Kwang Woo;Lee, Chang Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.936-942
    • /
    • 2019
  • Autonomous driving of drone indoor must move along a narrow path and overcome other factors such as lighting, topographic characteristics, obstacles. In addition, it is difficult to operate the drone in the hallway because of insufficient texture and the lack of its diversity comparing with the complicated environment. In this paper, we study an autonomous drone navigation using Convolution Neural Network(CNN) in indoor environment. The proposed method receives an image from the front camera of the drone and then steers the drone by predicting the next path based on the image. As a result of a total of 38 autonomous drone navigation tests, it was confirmed that a drone was successfully navigating in the indoor environment by the proposed method without hitting the walls or doors in the hallway.

Analysis of Propagation Characteristics in 6, 10, and 17 GHz Semi-Basement Indoor Corridor Environment (6, 10, 17 GHz 반지하 실내 복도 환경의 전파 특성 분석)

  • Lee, Seong-Hun;Cho, Byung-Lok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.555-562
    • /
    • 2022
  • This study measured and analyzed the propagation characteristics at frequencies 6, 10, and 17 GHz to discover the new propagation demands in a semi-basement indoor corridor environment for meeting the 4th industrial revolution requirements. The measured indoor environment is a straight corridor consisting of three lecture rooms and glass windows on the outside. The measurement scenario development and measurement system were constructed to match this environment. The transmitting antenna was fixed, and the frequency domain and time domain propagation characteristics were measured and analyzed in the line-of-sight environment based on the distance of the receiving antenna location. In the frequency domain, reliability was determined by the parameters of the floating intercept (FI) path loss model and an R-squared value of 0.5 or more. In the time domain, the root mean square (RMS) delay spread and the cumulative probability of K-factor were used to determine that 6 GHz had high propagation power and 17 GHz had low propagation power. These research results will be effective in providing ultra-connection and ultra-delay artificial intelligence services for WIFI 6, 5G, and future systems in a semi-basement indoor corridor environment.

A Study on Indoor Air Quality in Seoul and Pusan (서울 및 부산지역 실내공간에서의 실내공기질에 관한 연구)

  • 김윤신;이상복;권성안;최원욱;김현탁;이홍석
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.04a
    • /
    • pp.301-303
    • /
    • 2000
  • 오늘날 경제적 생활환경의 개선으로 인하여 현대인의 일상생활 대부분이 다양한 실내공간에서 이루어지고 있고 인구 및 산업의 도시집중화에 따른 지하생활공간의 이용이 확대되는 둥 생활양식과 거주환경에 많은 변화를 가져오고 있다. 실내공간은 현대 도시인들에게 있어서 대부분의 시간을 소비하는 공간으로서(Wily et at., 1991) 실내공간의 공기오염이 보건학적인 중요한 관심사로 대두된 것은 1970년대 이후이며(Spongier, 1983) 현재 국내에서도 실내공간을 대상으로 오염물질에 대한 오염도가 조사되고 있으나 아직 미진한 상태이다(김윤신, 1994). (중략)

  • PDF

An Experimental Study on Mechanical Ventilation Using an Exhaust Engine in Corridor Fires (복도공간 화재 시 배연차를 활용한 배연에 관한 실험적 연구)

  • Lee, Sung-Ryong;Han, Dong-Hoon
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.99-105
    • /
    • 2010
  • Ventilation fans utilized correctly can increase the effectiveness of fire fighters and survivability of occupants. It is possible to increase the pressure of a corridor to prevent the infiltration of smoke. In this study, experiments were carried out to evaluate ventilation effectiveness in corridor fires. Corridor used in the experiment was 20 m long. Heptane was used as a fuel. Temperature and visibility were measured in order to evaluate ventilation effectiveness according to the position of a vent. Vent distance ranged from 0 m to 4 m and height varied from 0 m to 1.5 m. When the vent was positioned 2 m long and 0.75 m high the result was most effective.

Development of autonomous mobile patrol robot using SLAM (SLAM을 이용한 자율주행 순찰 로봇 개발)

  • Yun, Tae-Jin;Woo, Seon-jin;Kim, Cheol-jin;Kim, Ill-kwon;Lee, Sang-yoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.437-438
    • /
    • 2019
  • 본 논문에서는 ROS(Robot Operating System)기반으로한 로봇(Robot)에 레이저 거리 센서(LiDAR)를 설치하여 SLAM(Simultaneous Localization and Mapping : 동시적 위치 추적 지도 작성)기법으로 맵 정보를 습득하고, 저장하여 이를 기반으로 장애물과 건물의 실내 복도 안전하고 정확하게 순찰 할 수 있도록 하였다. 또한, 순찰 로봇(Robot)에 장착된 Raspberry카메라와 OpenCV 영상인식 기술을 이용하여 실시간 영상으로 실내 복도를 순찰하면서 사전에 설정된 특이사항이 있을 시 발견하고 기록하도록 시스템을 개발하였다.

  • PDF

Smart Integrated Resource Management System for SmartHome (첨단주택용 지능형 통합 리소스 관리를 위한 에너지 사용량 예측모델)

  • Park, Young-Kook;Lee, Min-Goo;Kang, Jeong-Hoon;Yoo, Jun-Jae;Ko, Won-Sik;Choi, Tae-Jun
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2009.05a
    • /
    • pp.428-431
    • /
    • 2009
  • 기존의 첨단주택은 IT 차원에서 접근되어 에너지 절약을 위한 기술은 시도하지 않았고 에너지 환경관리 기술이 미흡하였다. 본 논문에서는 실제 사용자 생활 패턴을 파악하여 에너지 소모를 얼마나 줄일 수 있는지 테스트 하였다. 복도, 출입구 그리고 현재 근무 중인 테이블에 조도 센서와 인체 감지 센서를 설치하였는데 조도 센서와 인체감지 센서는 하나의 그룹을 이루며 생활패턴을 파악하고 조도 값에 따라 실내등을 소등할 수 있도록 한다. 모든 센서 노드는 스타 토폴로지(one-hop) 형태로 연결되며 데이터는 USN 브릿지에 있는 베이스노드로 수집되고 이더넷을 통해 서버로 전달하면 DB에 저장된다. 그러므로 실시간으로 실내 환경 데이터를 수집하여 실내 환경 통합 감시 및 모니터링이 가능하고 에너지 소모를 줄일 수 있다.

  • PDF

Overlapped Image Learning Neural Network for Autonomous Driving in the Indoor Environment (실내 환경에서의 자율주행을 위한 중첩 이미지 학습 신경망)

  • Jo, Jeong-won;Lee, Chang-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.349-350
    • /
    • 2019
  • The autonomous driving drones experimented in the existing indoor corridor environment was a way to give the steering command to the drones by the neural network operation of the notebook due to the limitation of the operation performance of the drones. In this paper, to overcome these limitations, we have studied autonomous driving in indoor corridor environment using NVIDIA Jetson TX2 board.

  • PDF

Development of Propagation Loss Prediction Software for the Indoor V-Band Millimeterwave Communication Environments (V-밴드 밀리미터파 대역의 실내 통신환경 분석을 위한 경로손실 예측 소프트웨어 개발)

  • Chun, Joong-Chang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.1
    • /
    • pp.35-39
    • /
    • 2008
  • In this paper, we have developed a propagation loss prediction software with GUI (Graphic User Interface) functions, based on the geometrical ray optics model, which can predict radio parameters for the deployment of wireless indoor network. The program has two numerical modules consisted with electrical image and ray launching methods to implement UTD theory. The simulated results are compared with reported data measured in the foreign building environments for office and '一' type corridor, and measured and simulated results for the propagation loss agree with each other quite well. Simulation results for '一' type corridor and 'T' type corridor propagation environment are shown for reference.

  • PDF