DOI QR코드

DOI QR Code

Measurement and Comparative Analysis of Propagation Characteristics in 3, 6, 10, and 17 GHz in Two Different Indoor Corridors

두 가지 서로 다른 실내 복도에서 3, 6, 10, 17 GHz의 전파 특성 측정 및 비교 분석

  • 이성훈 (순천대학교 전자공학과 ) ;
  • 조병록 (순천대학교 전자공학과)
  • Received : 2023.10.24
  • Accepted : 2023.12.27
  • Published : 2023.12.31

Abstract

Propagation characteristics in line-of-sight(LOS) paths in 3, 6, 10, and 17 GHz frequency bands were measured and analyzed in two different indoor corridors: second floors of Buildings D2 and E2. The measurement was designed to measure when the receiving antenna moved at 0.5 m intervals from 3 m to 30 m, while the transmission antenna was fixed. The analysis of the two indoor corridors was compared by applying basic transmission loss, root mean square (RMS) delay spread, and K-factor. For basic transmission loss, the loss coefficient of the floating intercept path loss model was higher in the indoor corridor of Building E2 than in that of Building D2. Similarly, the RMS delay spread in the time domain was greater in the indoor corridor of Building E2. However, the indoor corridor of Building D2 exhibited higher K-factor in the 3, 6, and 17 GHz bands with lower wave propagation in the 10 GHz band. Despite the 2 indoor corridors being identical, the propagation characteristics varied due to different internal structures and materials. The results provide measurement data for ITU-R Recommendations regarding various indoor environments.

서로 다른 두 가지 실내 복도의 D2 건물과 E2 건물 2층에서 3, 6, 10, 17 GHz 주파수 대역에 대한 가시선(: Line of sight, LOS) 경로의 전파 특성을 측정 및 분석하였다. 송신 안테나를 고정한 상태에서 수신 안테나가 3 m에서 30 m까지 0.5 m 간격으로 측정한다. 두 실내 복도에 대한 분석은 기본 전송 손실, RMS(: Root mean square) 지연 확산 및 K-인자(: K-factor)를 적용하여 비교하였다. 기본 전송 손실은 FI(: Floating intercept) 경로 손실 모델의 손실 계수에서 D2 건물 보다 E2 건물의 실내 복도에서 더 높게 나타났다. 마찬가지로, 시간 영역에서 RMS 지연 확산이 E2 건물의 실내 복도에서 더 크다. 그러나 D2 건물의 실내 복도에서는 3, 6, 17 GHz 대역에서 더 높은 K-인자값을 나타냈고, 10 GHz 대역에서는 전파 전달도가 더 낮은 것으로 나타났다. 두 가지 실내 복도는 동일한 크기에도 불구하고 내부 구조와 재질이 다르기 때문에 전파 특성의 변화가 많다. 결과는 다양한 실내 환경에 대한 ITU-R 기고에 대한 측정 데이터를 제공한다.

Keywords

Acknowledgement

이 논문은 2023년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (RS-2023-00260829, 인빌딩 3차원 전파특성 자동 측정·분석·모델링 기술 개발)

References

  1. S. Deng, M. K. Samimi, and T. S. Rappaport, "28 GHz and 73 GHz Millimeter-Wave Indoor Propagation Measurements and Path Loss Models," IEEE Int. Conf. on Communication Workshop (ICCW), London, UK, 2015.
  2. Y. L. C. D Jong, J. A. Pugh, M. Bennai, P. Bouchard, "2.4 to 61 GHz Multiband Double-Directional Propagation Measurements in Indoor Office Environments," IEEE Trans. on Antennas and Propagation, vol. 66, no. 9, 2018, pp. 4806-20. https://doi.org/10.1109/TAP.2018.2851279
  3. S. Lee, B. Cho, and H. Lee, "Analysis of Propagation Characteristics according to the Change of Transmitter-Receiver Location in Indoor Environment," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 2, 2020, pp. 211-217.
  4. S. Lee, H. Lee, and B. Cho, "Delay Spread Measurement and Analysis in 3 GHz and 6 GHz Indoor Environments," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 1, 2020, pp. 15-20.
  5. D. Kim and S. Oh, "Verification and Analysis for Recommendation ITU-R P.526, P.1546, P.1812 of Propagation Model Loaded in Spectrum Management Intelligent System," J. of the Korea Institute of Electronic Communication Sciences, vol. 16, no. 2, 2021, pp. 247-254.
  6. ITU, "Propagation data and prediction methods for the planning of indoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 450 GHz," Recommendation ITU-R P.1238-11, 2021, pp. 1-27.
  7. Y. Shen, Y. Shao, X. Liao, H. Zhang, J. Zhang, "Millimeter-Wave Propagation Measurement and Modeling in Indoor Corridor and Stairwell at 26 and 38 GHz," IEEE Access, vol. 9, 2021, pp. 87792-805. https://doi.org/10.1109/ACCESS.2021.3081822
  8. M. K. Elmezughi, T. J. Afullo, and N. O. Oyie, "Performance Study of Path Loss Models at 14, 18, and 22 GHz in an Indoor Corridor Environment for Wireless Communications," South African Institute of Electrical Engineers, vol. 112, 2021, pp. 32-45. https://doi.org/10.23919/SAIEE.2021.9340535
  9. I. D. S. Batalha, A. V. R. Lopes, J. P. L. Araujo, B. L. S. Castro, F. J. B. Barros, G. P. D. S. Cavalcante, E. G. Pelaes, "Indoor Corridor and Office Propagation Measurements and Channel Models at 8, 9, 10 and 11 GHz," IEEE Access 2019, vol. 7, 2019, pp. 55005-55021. https://doi.org/10.1109/ACCESS.2019.2911866
  10. N. O. Oyie and T. J. O. Afullo, "Measurements and Analysis of Large-Scale Path Loss Model at 14 and 22 GHz in Indoor Corridor," IEEE Access, vol. 6, 2018, pp. 17205-214. https://doi.org/10.1109/ACCESS.2018.2802038
  11. S. Lee and B. Cho, "Analysis of Propagation Characteristics in 6, 10, and 17 GHz Semi-Basement Indoor Corridor Environment," J. of the Korea Institute of Electronic Communication Sciences, vol. 17, no. 4, Aug. 2022, pp. 555-562.
  12. ITU-R, "Studies of short-path propagation data and models for terrestrial radiocommunication systems in the frequency range 6 GHz to 450 GHz," Report ITU-R P.2406-2, 2021, pp. 1-151.
  13. R. A. Valenzuela, O. Landron, and D. L. Jacobs, "Estimating Local Mean Signal Strength off Indoor Multipath Propagation," IEEE Trans. on Vehicular Technology, vol. 46, no. 1, 1997, pp. 203-212. https://doi.org/10.1109/25.554753
  14. H. Obeidat, A. A. S. Alabdullah, N. T. Ali, R. A. Asif, O. Obeidat, M. S. A. B. Melha, W. Shuaieb, R. A. A. Alhameed, P. Excell, "Local Average Signal Strength Estimation for Indoor Multipath Propagation," IEEE Access, vol. 7, 2019, pp. 75166-76. https://doi.org/10.1109/ACCESS.2019.2918178
  15. S. Lee and B. Cho, "Measurement and Analysis of Local Average Power According to Averaging Length Changes of 3, 6, 10, and 17 GHz in an Indoor Corridor Environment," Int. J. of Antennas and Propagation, vol. 2023, article ID 1485543, Jan. 2023, pp. 1-7.
  16. N. R. Zulkefly, T. K. Rahman, M. H. Azmi, O. A. Aziz, "6.5 GHz and 10.2 GHz Path Loss Measurements and Modeling for 5G Communications System Prediction," Int. Research J. of Engineering and Technology, vol. 06, no. 11, 2017, pp. 6-11. https://doi.org/10.15623/ijret.2017.0611002
  17. M. B. Majed, T. A. Rahman, O. A. Aziz, M. N, Hindia, E. Hanafi, "Channel Characterization and Path Loss Modeling in Indoor Environment at 4.5, 28, and 38 GHz for 5G Cellular Networks," Int. J. of Antennas and Propagation," vol. 2018, article ID 9142 367, 2018, pp. 1-14.
  18. H. Hashemi, "Impulse Response Modeling of Indoor Radio Propagation Channels," IEEE J. on Selected Areas in Communication, vol. 11, no. 7, 1993, pp. 967-78. https://doi.org/10.1109/49.233210
  19. H. Hashemi and D. Thol, "Statistical Modeling and Simulation of the RMS Delay Spread of Indoor Radio Propagation Channels," IEEE Trans. on Vehicular Technology, vol. 43, no. 1, 1994, pp. 110-20. https://doi.org/10.1109/25.282271
  20. L. J. Greenstein, D. G. Michelson, and V. Erceg, "Moment-Method Estimation of the Ricean-Factor," IEEE Communication Letters, vol. 3, no. 6, 1999, pp. 175-76. https://doi.org/10.1109/4234.769521
  21. A. Abdi, C. Tepedelenlioglu, M. Kaveh, G. Giannakis, "On the Estimation of the K Parameter for the Rice Fading Distribution," IEEE Communication Letters, vol. 5, no. 3, 2001, pp. 92-94. https://doi.org/10.1109/4234.913150