• Title/Summary/Keyword: 실내 모형말뚝 재하실험

Search Result 17, Processing Time 0.024 seconds

Experimental Study on Soft Ground with DCM Column (DCM 타설 지반에 관한 실내모형실험)

  • Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.3
    • /
    • pp.35-44
    • /
    • 2020
  • This study described the result of laboratory model tests, in order to compare the improvement effect of the DCM column installed on the soft ground according to DCM column type. In the laboratory model test, the non-reinforced type and the 3 types of DCM column were applied, and the behavior (settlement, lateral flow) of soft ground was evaluated under the surcharge load condition for each type. The settlement evaluation result showed that the settlement of soft ground without DCM column occurred rapidly under the low load condition, but the settlement of the soft ground with the DCM column had relatively small settlement. The evaluation result of lateral flow in the soft ground showed that the soft ground with DCM column had lower lateral displacement than the soft ground without DCM column. Especially, the lateral displacement under the same load condition decreased in the order of pile type, wall type, and grid type. Therefore, it confirmed that the improvement effect of soft ground was excellent when the DCM of grid type was applied for settlement and lateral flow.

Analysis of Bearing Capacity Characteristics on Granular Compaction Pile - focusing on the Model Test Results (조립토 다짐말뚝의 지지력 특성 분석 - 모형토조실험 결과를 중심으로)

  • Kang, Yun;Kim, Hong-Taek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.51-62
    • /
    • 2004
  • Granular compaction piles have the load bearing capacity of the soft ground increase and have the settlement of foundation built on the reinforced soil reduce. The granular compaction group piles also have the consolidation of the soft ground accelerate and have the liquefaction caused by earthquake prevent using the granular materials such as sand, gravel, stone etc. However, this method is one of unuseful methods in Korea. The Granular compaction piles are constructed by grouping it with a raft system. The confining pressure at the center of bulging failure depth is a major variable in relation to estimate for the ultimate bearing capacity of the granular compaction piles. Therefore, a share of loading is determined considering the effect of load concentration ratio between the granular compaction piles and surrounding soils, and varies the magnitude of the confining pressure. In this study, method for the determination of the ultimate bearing capacity is proposed to apply a change of the horizontal pressure considering bulging failure depth, surcharge and loaded area. Also, the ultimate bearing capacity of the granular compaction piles is evaluated on the basis of previous study on the estimation of the ultimate bearing capacity and compared with the results obtained from laboratory scale model tests. And using the result from laboratory model tests, it is studied increase effect of the bearing capacity on the granular compaction piles and variance of coefficient of consolidation for the ground.

  • PDF

Estimation of Rotation Point of Laterally Loaded Piles through Laboratory Test (실내모형 실험을 통한 수평재하말뚝의 회전점 산정)

  • Hwang, Sung-Wook;Hong, Jung-Moo;Lee, Jun-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.744-747
    • /
    • 2008
  • In this study, to analyze the rotation point of piles, the laboratory lateral load test was performed. The lateral load bearing capacity is one of the important factor related with structure failure directly. Analyzing rotation point in different soil condition, relative density and stress condition, leads more accurate ultimate lateral bearing capacity. Also, reliability was analyzed about established 예측식 as applying to tapered pile. As a result, the established prediction was suitable to cylider pile, but not to tapered pile.

  • PDF

An Experimental Study on the Load-settlement Behavior and Settlement-reducing Effect of the Disconnected Piled Raft Foundation (말뚝보강기초의 하중-침하량 거동 및 침하감소효과에 대한 실험적 연구)

  • Lee Yeong-Saeng;Hong Seung-Hyeun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.95-104
    • /
    • 2006
  • For the interests in the economical and safe design of foundation system, the concern on the piled raft or disconnected piled raft foundation system is increasing now. In this study, the behavior and the effects of the disconnected piled raft foundation not studied actively in this country were examined using the triaxial compression tests in place of laboratory model tests. The triaxial test samples were prepared with Jumunjin standard sand and the carbon rods, which simulate the ground soil and piles respectively. After the sample in which carbon rods were arranged was laid inside the triaxial chamber, the confining pressure was applied and then loading test was conducted. To analyze the reinforcing effects of the disconnected piled raft foundation, a few number of tests were carried out by changing the number, the diameter and the length of the model piles. As a result of this study, in the disconnected piled raft foundation system, even though the number of pile is few and the diameter of pile is small, the settlement of the foundation system decreased greatly.

Evaluation of Ultimate Bearing Capacity on Granular Compaction Pile Considering Various Stresses in a Ground (지중응력의 변화를 고려한 조립토 다짐말뚝의 극한지지력 평가)

  • Kang, Yun;Yun, Ji-Yeon;Chang, Weon-Ho;Kim, Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.115-124
    • /
    • 2004
  • Granular compaction pile has the load bearing capacity of the soft ground increase and has the settlement of foundation built on the reinforced soil reduce. The granular compaction group piles also have the consolidation of the soft ground accelerate and prevent the liquefaction caused by earthquake using the granular materials such as sand, gravel, stone etc. However, this method is not widely used in Korea. The granular compaction piles are constructed by grouping them with a raft system. The confining pressure at the center of bulging failure depth is a major variable in estimating the ultimate bearing capacity of the granular compaction piles. Therefore, a share of loading is determined considering the effect of load concentration ratio between the granular compaction piles and surrounding soils, and the variation of the magnitude of the confining pressure. In this study, a method for the determination of the ultimate bearing capacity is proposed to apply a change of the horizontal pressure considering bulging failure depth, surcharge, and loaded area. Also, the ultimate bearing capacity of the granular compaction pile is evaluated on the basis of previous study(Kim et al., 1998) on the estimation of the ultimate bearing capacity and compared with the results obtained from laboratory scale model tests and DEM numerical analysis using the PFC-2D program.

A Study of Lateral Resistance of Block Breakwater Combined with Piles (수치해석을 이용한 말뚝이 결합된 블록식방파제의 수평저항력에 관한 연구)

  • Lee, Won-Hyo;Kwon, Soon-Goo;Kim, Tae-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.4
    • /
    • pp.100-108
    • /
    • 2022
  • Three-dimensional FEM numerical analysis was performed to understand the behaviors of blocks and piles according to the horizontal load for the block breakwater combined with piles. The Modified Mohr-Coulomb model, the improved version of the Mohr-Coulomb model, was applied for the ground modeling. The cases when the pile is embedded only into the block, embedded to the riprap layer (H = 4.29 cm), and embedded to the ground down to 2H, 3H, and 4H were examined. The results of the laboratory model experiment and the numerical analysis showed similar horizontal resistance force-displacement behaviors. The pile showed rotational behavior up to the embedment depth of 1H~2H and bending behavior in the case of 3H~4H depth embedment. When the embedment depth of the pile is 3H or more, the pile shows a bending behavior, so it can be considered that the pile contributes significantly to the horizontal resistance of the block breakwater. The results of this study will be used for various numerical analyses for real-size structure design.

A Study on Ground Heave Characteristics of Soft Ground with DCM (DCM으로 개량된 연약점토지반의 지반융기에 관한 고찰)

  • You, Seung-Kyong;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.75-84
    • /
    • 2020
  • This paper described the analysis result on heaving of soft ground with DCM column type, based on the results of laboratory model tests on the soft ground with DCM column. The heave characteristics of the soft ground were evaluated according to the application of DCM column in soft ground. The results showed that the heaving of soft ground without DCM column occurred rapidly when the lateral deformation of soft ground increased significantly under the 4th load step condition. In addition, the heaving of soft ground in final load step caused tensile failure of the ground surface. The maximum heaving of the soft ground with the DCM column occurred in the final load step, and the heaving quantity decreased in the order of pile, wall, and grid type. Especially, the soft ground with DCM of grid type effectively resisted ground heaving, even if it was extremely failure in the bottom ground of embankment. The results of the maximum heaving according to the measurement point showed that the heaving of the soft ground with DCM of grid type was 3.1% and 1.6% compared to that of the pile and wall type at the location of LVDT-1, and the heaving of the LVDT-2 position was 1.0% and 2.1%, respectively.