• 제목/요약/키워드: 실내 라돈농도

검색결과 66건 처리시간 0.018초

국내 실내 라돈농도와 연간 피폭선량 예측에 관한 연구 (A Study of Radon Concentration in First Floor and Basement and Prediction of Annual Exposure Rate in Korea)

  • 이종대;김윤신;손부순;김대선
    • 한국환경과학회지
    • /
    • 제15권4호
    • /
    • pp.311-317
    • /
    • 2006
  • The purpose of this study was to investigate Rn concentration and annual radiation exposure level in the basement and first floor. The Rn Cup monitors were placed in different environments such as shopping stage, office building, Apartment, Hospital, house in Seoul from Match 1996 to April 1997 and CR-39 films were collected every two months. The mean radon concentration in the basement of house($88.6\;Bq/m^3$) showed the highest level among the areas, while radon concentration on the first floor of house($50.5\;Bq/m^3$) showed the higher than other areas. The annual radiation exposure dose that person on the floor / in the basement of differential place in the seoul can be exposed during living was estimated from 24.11 to 87.64 mRem/yr. This radiation dose is significantly lower than 130mRem maximum radiation dosage from the radon nuclide prescribed by the ICRP, with respect to the overall average exposure of the working adult. this study indicated that possible radon sources on the first floor / in the basement areas are radon intrusion from soil gas, construction materials, or ground water leaking. Further study is needed to quantitatively assess major contributions of radon-222 and health effect to radon exposure.

서울지역 건축물의 환경적 특성에 따른 실내 라돈농도 변화 (The Variation Characteristics of Indoor Radon Concentration from Buildings with Different Environment, Seoul)

  • 전재식;이지영;엄석원;채영주
    • 한국대기환경학회지
    • /
    • 제27권6호
    • /
    • pp.692-702
    • /
    • 2011
  • For more effective indoor radon reduction policy and technique, we researched radon data analysis for some buildings in Seoul. Those buildings were categorized as dwelling, underground and office space and the variations of radon concentration and its sources were evaluated. The variations of radon concentrations of indoor space of buildings for a day were patterned specifically by dwelling habits and different environment. As for the new built apartments which were not yet moved in, their indoor radon concentrations were showed more than 3 times after applying interior assembly, and were 5 times higher than ones of rather old residences. As for the subway stations, the radon concentrations during off-run times were about 15% higher than run-times. 10% of radon seemed to be reduced by installation of platform screen doors. As for office space, radon concentrations during working hours were about 2.5 times higher than non-working hours. Plaster board are expected as a main source of radon for them. By radon measurement method for long-term, its data can be over estimated because it covers non-active time in office or public space. Therefore combination of short and long-term measurement method is required for effective and economic reduction. Furthermore importance of ventilation is requested as public information service for all dwelling space. And also standardization for radium content or radiation of radon is necessary.

군부대 시설 및 지하철 역사 주변 지하상가의 측정농도와 노출시간을 이용한 실내에서의 라돈 위해성 평가 (Indoor Radon Risk Assessment by Applying Measurement Concentrations and Exposure Times for Military Facilities and Underground Shopping Malls near Subway stations)

  • 공진석;김영희
    • 한국환경보건학회지
    • /
    • 제42권5호
    • /
    • pp.345-351
    • /
    • 2016
  • Objectives: The objective of this study was to conduct risk assessment using indoor radon concentration and exposure times. Methods: The target facilities were military facilities before and after the application of radon reduction processes and underground commercial facilities in major subway stations in Seoul. Indoor radon concentrations were measured by passive sampler. Results: Radon concentrations in 13 military facilities were initially higher than the guidelines, but the levels were below guidelines after the application of radon reduction processes. Underground shopping mall radon concentrations near subway stations in Seoul satisfied the guidelines. However, indoor radon effective doses after radon reduction processes in some military facilities and those in underground shopping malls belonged to International Commission on Radiological Protection (ICRP) groups needing control management. Conclusion: Indoor radon management requires risk assessment data that takes into account working time (or residence time) in addition to management according to concentration guidelines.

국내 라돈 취약가구에 대한 주거공간의 실내 라돈 농도에 관한 연구 (A Study on Indoor Radon Concentration among Vulnerable Households in Korea)

  • 주덕현;박기호;정희원;임형준;복동석;윤동원;민경환;문경덕;김정운;이지민;최원용;김성윤
    • 한국환경보건학회지
    • /
    • 제41권2호
    • /
    • pp.61-70
    • /
    • 2015
  • Objectives: The purpose of this research was to examine radon exposure in terms of the relationship between the living environment and indoor radon concentrations among vulnerable households. Methods: Nationwide, 1,129 subjects were selected using personal questionnaires for adequately understanding the living environment, installation of E-PERM radon gas detectors, and investigation of the structure of the housing. Results: The mean concentration of indoor radon for all subjects was $130.2Bq/m^3$ (GM=101.7), and a total of 438 subjects (38.8%) exceeded the recommended standards ($148Bq/m^3$) for public facilities by the Ministry of the Environment. By location, the highest concentrations ($164.3Bq/m^3$, GM=124.1) were seen in North Chungcheong Province. In the case of the Seoul/Gyeonggi Province metropolitan area, they showed $125.6Bq/m^3$ (GM=105.1) and $118.9Bq/m^3$ (GM=96.5), respectively. By type of housing, indoor radon concentrations in single-family housing were higher than in row/multi-family housing (p<0.01). Although indoor radon concentrations raised in accordance with year of construction (p<0.05), the difference between indoor radon concentrations in underground residences was not observed to be statistically significant (p=0.633). Conclusion: More studies are necessary in the future regarding the difference in indoor radon concentrations that may occur due to different of types of indoor construction, building materials, and the amount of building materials.

광주지역 다중이용시설에서 실내공기질 농도와 상관성 분석 (The Concentration of Indoor Air Quality and Correlations of Materials at Multiple-use Facilities in Gwangju)

  • 이대행;이세행;배석진;김난희;박강수;김도술;백계진;문용운
    • 대한환경공학회지
    • /
    • 제32권11호
    • /
    • pp.1001-1010
    • /
    • 2010
  • 광주지역 다중이용시설 54개소와 공중이용시설 15개소에 대한 입자상물질(미세먼지, 석면), 가스상물질($CO_2$, CO, $NO_2$, HCHO, Rn, VOCs), 총부유세균의 농도에 대해서 조사하고 각 항목간의 상관성분석을 실시하였다. 미세먼지($PM_{10}$)는 실내주차장에서 평균 $69.2\;{\mu}g/m^3$로 가장 높았고, 이어서 보육시설, 대규모점포, 지하역사 순이었다. 일산화탄소는 실내주차장에서 평균 2.7 ppm으로 가장 높았고, 이산화탄소는 의료시설에서 604.1 ppm으로 가장 높았으며, 이산화질소는 실내주차장에서 0.036 ppm으로 가장 높았다. 포름알데하이드는 54개 전체시설에서 기하평균 $3.6\;{\mu}g/m^3$이었으며, 미술관은 $631.8\;{\mu}g/m^3$로 가장 높았다. 휘발성유기화합물질(VOCs)은 모든 시설에서 기하평균 $24.14\;{\mu}g/m^3$이었고, 이 중 톨루엔이 $15.30\;{\mu}g/m^3$로 가장 높았으며, 이어서 자일렌, 에틸벤젠, 벤젠, 스티렌 순으로 조사되었다. 총부유세균은 찜질방에서 평균 $625.3\;CFU/m^3$로 가장 높았고, 보육시설, 의료기관, 대규모점포 순이었다. 석면은 보육시설에서, 라돈은 미술관에서 높은 것으로 조사되었다. 보육시설에서 미세먼지와 총부유세균은 로그함수의 결정계수($R^2$) 0.5332로 양의 상관성을 보여주었고, 이산화탄소와 일산화탄소는 보육시설과 실내주차장에서 양의 상관성을 보여주었다. 휘발성물질간의 상관식은 모든시설에서 직선함수보다는 로그함수에 의해 잘 설명되었다.

충청북도 일부지역 내 주택 실내 라돈 농도 (A Study on the Concentrations of Indoor Radon for Houses in Chungcheongbuk-do Province, Korea)

  • 지현아;유주희;김가현;원수란;김선홍;이정섭
    • 한국환경보건학회지
    • /
    • 제45권6호
    • /
    • pp.668-674
    • /
    • 2019
  • Objectives: Modern people spend most of their day indoors. As the health impact of radon becomes an issue, public interest also has been growing. The primary route of potential human exposure to radon is inhalation. Long-term exposure to high levels of radon increases the risk of developing lung cancer. Radon exposure is known to be the second-leading cause of lung cancer, following tobacco smoke. This study measures the indoor radon concentrations in detached houses in area A of Chungcheongbuk-do Province considering the construction year, cracks in the houses, the location of installed detectors, and seasonal effects. Methods: The survey was conducted from September 2017 to April 2018 on 1,872 private households located in selected areas in northern Chungcheongbuk-do Province to figure out the year of building construction and the location of detector installed and identify the factors which affect radon concentrations in the air within the building. Radon was measured using a manual alpha track detector (Raduet, Hungary) with a sampling period of longer than 90 days. Results: Indoor radon concentrations in winter within area A was surveyed to be 168.3±193.3 Bq/㎥. There was more than a 2.3 times difference between buildings built before 1979 and those built after 2010. The concentration reached 195.4±221.9 Bq/㎥ for buildings with fractures and 167.2±192.4 Bq/㎥ for buildings without fractures. It was found that detectors installed in household areas with windows exhibited a lower concentration than those installed in concealed spaces. Conclusion: High concentrations of indoor radon were shown when there was a crack in the house. Also, ventilation seems to significantly affect radon concentrations because when the location of the detector in the installed site was near windows compared to an enclosed area, radon concentration variation increased. Therefore, it is considered that radon concentration is lower in summer because natural ventilation occurs more often than in winter.