자동차의 전장화와 실내 서비스 제공 로봇 등의 산업화로 자율주행에 대한 연구가 활발히 진행되고 있다. 일반적으로 주변이 넓은 외부의 경우 주로 GPS나 라이다, 비전을 통해 위치를 인식하고, 실내에서는 WiFi, UWB(Ultra-Wide Band), VLP등의 기술로 위치 측위를 수행한다. 본 논문에서는 실내 환경에서 서로 다른 색온도를 가진 LED 조명을 이용한 자기 위치 측위에 대한 시스템을 소개한다. 터널과 같은 모의 실험 환경에서 LED 조명을 설치 한 후, 위치에 따른 색도값의 분석을 통해 현재 위치에 대한 정보를 얻을 수 있음을 보였다. 이를 통해 차량의 터널 내 위치, 창고나 공장과 같은 실내에서 기기의 움직임에 대한 정보를 얻을 수 있을 것으로 기대한다.
GPS는 실내에서 수신률이 떨어지는 특성을 가지고 있다. 이러한 단점을 극복하기 위해 AP의 RSS를 이용한 측위기술에 대한 연구와 개발이 이루어지고 있다. 측위기술과 더불어 신호 세기만을 가지고 장애물까지 판단할 수 있다면 활용도와 효율성 측면에서 이를 응용한 서비스를 하는 입장에서도 별다른 구축비용이 들지 않는다는 장점이 있다. 본 논문에서는 RSS(Received Signal Strength)를 이용하여 장애물을 판단하는 방법을 제시한다.
측위 기술은 증강현실, 스마트 팩토리, 자율주행 등에서 중요한 기능을 수행하고 있다. 측위 기술 중에서 비콘을 이용한 측위 방법은 RSSI(Receiver Signal Strength Indicator) 값의 편차로 인하여 도전적인 과제로 여겨져 왔다. 본 논문에서는 수신기의 RSSI 값을 입력으로 하고 거리를 목표 값으로 하는 신경망을 학습시켜서 이동하는 객체에 대한 위치를 예측하였다. 이를 수행하기 위해 RSSI 대비 거리 실측값을 수집하였다. 수집한 데이터로 합성 데이터를 만들기 위한 신경망을 도입하였다. 이 신경망을 바탕으로 거리 대비 RSSI 값을 예측하였다. 합성 데이터를 바탕으로 가상으로 좌표계를 구성하여 객체의 위치를 예측하였다. 합성 데이터를 생성하기 위한 신경망으로 RSSI의 표준편차는 구하였고 이 값을 기반으로 가상환경에서 단말의 위치를 추적하는 신경망을 학습시켜 객체의 좌표를 추정하였다.
실내 무선 측위를 위한 UWB (Ultra Wide Band) 무선 측위 시스템에서는 정확한 위치 정보를 추정하기 위해 거리 인지 정보를 사용한다. 거리 인지를 위해서는 TOA (Time of Arrival), TDOA (Time Difference of Arrival)와 같은 시간 정보를 기반으로 하는 기법을 사용하는 것이 일반적이며, 시간 정보를 측정하기 위해서는 흔히 클럭 정보를 사용하는데, 이 때 가장 기본적으로 고려해야할 요소가 클럭 동기를 맞추는 것과 클럭 오프셋에 의한 오차를 보상하는 것이다. 본 논문에서는 이를 해결하기 위해 공통 클럭을 이용한 거리 인지 및 무선 측위 기술을 제안한다. 제안하는 무선 측위 기술의 성능 검증을 위하여 IEEE 802.15.4a TG에서 제시한 채널 환경에서 공통 클럭을 이용한 측위 시스템의 거리 인지 및 우선 측위 결과를 확인하기 위한 실험을 진행하였으며, 모의실험 결과를 통하여 클럭 오프셋에 영향을 받지 않는 우선 측위 결과를 얻을 수 있음을 확인하였다.
본 논문에서는 건설현장 작업자의 실내 위치 추적을 위한 새로운 방법을 소개한다. 전통적으로 GPS및 NTRIP과 같은 기술은 주로 야외에서 효과적인 위치 확인을 제공하는 데 사용되었습니다. 그러나 이러한 기술은 실내에서 사용할 경우 정확도가 떨어지는 문제가 있습니다. 이러한 문제를 해결하기 위해 본 논문에서는 Aruco marker를 활용하여 작업자의 위치를 추적하는 방법을 제안한다. Aruco marker는 작업자와 마커 사이의 거리를 측정하는 데 사용됩니다. 이 새로운 접근 방식은 기존 위치 확인 방법에 비해 더욱 정확한 실내 위치 확인을 제공합니다. 작업자 위치를 실시간으로 확인할 수 있어 작업 일정을 최적화하고 작업자 간 협업을 촉진합니다. 따라서 Aruco marker를 활용한 실내 측위 방식은 기존의 기술의 문제점을 보완하는 실내 위치 확인 시스템으로 활용될 수 있다.
WiFi Fingerprinting기술의 측위 정확도에 가장 큰 영향을 주는 요인은 수신되는 신호세기(RSS)의 안정성이다. 하지만 실내 환경의 높은 복잡도로 인해 같은 위치에서도 RSS가 시간에 따라 변화하며 불안정하다. 이러한 RSS variance 문제를 해결 하기위한 다양한 연구들이 수행되었다. 하지만 기존 연구들의 경우 시스템의 복잡도가 증가하며, RSS가 급격히 변하는 경우에는 측위 성능을 보장 할 수 없다. 본 논문에서는 특수한 구조를 갖는 Neural Network설계하고 이에 최적화된 입력 Feature고안하며 이를 통해 급격한 RSS 변화에서도 성능을 보장하는 WiFi Fingerprinting 알고리즘 제안한다. 제안하는 알고리즘과 기존 알고리즘을 동일한 조건에서 시뮬레이션을 통해 비교한 결과 제안하는 알고리즘이 급격한 RSS 변화에서 상대적으로 높은 측위 정확도 보여줌을 확인 할 수 있었다.
The positioning technology that measures the position of a person or object is a key technology to deal with the location of the real coordinate system or converge the real and virtual worlds, such as digital twins, augmented reality, virtual reality, and autonomous driving. In estimating the location of a person or object at an indoor construction site, there are restrictions that it is impossible to receive location information from the outside, the communication infrastructure is insufficient, and it is difficult to install additional devices. Therefore, this study tested the direct sparse odometry algorithm, one of the visual Simultaneous Localization and Mapping (vSLAM) that estimate the current location and surrounding map using only image information, at an indoor construction site and analyzed its applicability as an indoor positioning technology. As a result, it was found that it is possible to properly estimate the surrounding map and the current location even in the indoor construction site, which has relatively few feature points. The results of this study can be used as reference data for researchers related to indoor positioning technology for construction sites in the future.
최근 유비쿼터스 컴퓨팅 환경에서 상황인식 서비스를 위한 핵심 기술로 실내 위치인식 기술이 주목받고 있다. 기존에 연구된 크리켓은 비중앙집중형 구조로 설계되어 사용자의 프라이버시를 보호하고, 확장, 유지관리가 용이하며, 하드웨어 비용이 저렴한 잇점이 있다. 이 논문에서는 RF와 초음파신호 사이의 TDOA에 기반한 크리켓 시스템보다 개선된 실내 측위시스템을 설계하였다. RF 메시지를 전송하기 위하여 ISM 대역인 2.4GHz 주파수를 사용하였다. 비콘에서 RF와 초음파를 전송하는 빈도(Beaconing frequency)는 채널 이용률을 높이기 위해 2배 높였다. 초음파 펄스 지속시간은 초음파 신호의 거리를 증가시키면서 최적화 시켰다. 또한 위치좌표를 계산하는 기능을 리스너에 내장시켰다. 실험결과 위치 업데이트율과 위치 정확도는 향상되었다.
최근, 실내 위치 기반 서비스에서 정확한 서비스를 위해 Wi-Fi 핑거프린트 기반의 딥러닝 기술을 이용한 연구가 이루어지고 있다. 딥러닝 모델 중에서 과거의 정보를 기억할 수 있는 RNN 모델은 실내측위에서 연속된 움직임을 기억할 수 있어 측위 오차를 줄일 수 있다. 이때 학습 데이터로서 연속적인 순차 데이터를 필요로 한다. 그러나 일반적으로 Wi-Fi 핑거프린트 데이터의 경우 특정 위치에 대한 신호들만으로 관리되기 때문에 RNN 모델의 학습데이터로 사용이 부적절하다. 본 논문은 RNN 모델의 순차적인 입력 데이터의 생성을 위해 클러스터링을 통한 영역 데이터로 확장된 Wi-Fi 핑거프린트 데이터 기반 이동 경로의 예측을 통한 경로 생성 방법에 대해 제안한다.
본 논문에서는 위치기반서비스의 핵심기능을 담당하는 측위기술 중 흔히 사용되고 있는 삼각측량법과 최소자승법을 보정한 방법을 이용하여 객체의 위치를 결정하는 알고리즘의 산포를 감소시키는 방안을 연구하였다. 두 측위 방법에서 사용되는 거리값은 모두 동일한 보정과 필터링 과정을 적용하였으며, 프로그램 구현 후 실내에서 테스트를 실시하였다. 프로그램은 LabView 2010으로 구현하였고, 각각의 알고리즘을 모듈화하여 필터링 적용 전후 및 개선효과를 비교하기 쉽도록 구성하였다. 일반적인 환경에서 실험한 결과 삼각측량이 최소자승법보다 더 좋은 정확도를 보여주었고, 필터링 과정을 거칠수록 정확도가 향상되는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.