• Title/Summary/Keyword: 실내위치확인기술

Search Result 129, Processing Time 0.025 seconds

RSSI based Indoor Location Tracking System using Wireless Sensor Network technology (무선 센서네트워크 기술을 활용한 RSSI기반의 실내위치인식 시스템)

  • Kwon, Joon-Dal;Shin, Jae-Wook;Shin, Kwang-Sik;Lee, Eun-Ah;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.364-367
    • /
    • 2007
  • We combined CC2431(Chipcon, Norway), as the platform for the Indoor Location Tracking, which follows Zigbee/IEEE802.15.4 standards in RSSI (Received Signal Strength Indicator) and Base Station Node and then, embodied Indoor Location Tracking System. CC2431 is composed of the Reference Node that transfer its current position at the designated place and the Blind Node. The Blind node receives the current position(X and Y coordinates) of the Reference Node fields which are being contiguous and also, calculates its current position and transfers it to the Base Station Node. The base station node is used for receiving the current position of blind node and passing its data to the PC as a gateway. We can make sure where is the Blind Node not only from the out-of-the-way place of the server side but from the outside in a real-time.

  • PDF

Development of Sensor System for Indoor Location-Based Service Implementation (실내 위치기반 서비스 구현을 위한 센서 시스템 개발)

  • Cha, Joo-Heon;Lee, Kyung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1433-1439
    • /
    • 2012
  • This paper introduces a sensor system based on indoor locations in order to implement the Building Energy Management System. This system consists of a thermopile sensor and an ultrasonic sensor. The sensor module is rotated by $360^{\circ}$ and yawed up-and-down by two electric motors. Therefore, it can simultaneously detect the number and location of the inhabitants in the room. It uses wireless technology to communicate with the building manager or the smart-home server, and it can save electric energy by controlling the lighting system or heating/air conditioning equipment automatically. We also demonstrate the usefulness of the proposed system by applying it to a real environment.

Context Information Supporting System Based on Indoor Location for Healthcare Home Service (헬스케어 홈 서비스를 위한 실내위치 기반의 상황정보 지원 시스템)

  • Ahn Dong-In;Shin Chang-Sun;Joo Su-Chong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06d
    • /
    • pp.64-66
    • /
    • 2006
  • 본 논문에서는 실내 거주자의 위치를 기반으로 분산객체그룹 프레임워크의 구성요소인 모바일 프락시(Mobile Proxy)를 이용하여 상황정보 지원 시스템 구축에 대해 기술하였다. 본 시스템은 가정 내 거주자의 이동을 고려하여 건강상태 및 상황정보를 제공하는 헬스케어 상황정보 서비스를 수행한다. 이를 위해 분산객체그룹 프레임워크의 그룹관리 서비스는 가정 내 위치 탐색 및 추적 센서와 서비스 수행객체 및 다양한 출력 장치들을 거실이나 침실과 같은 분할된 영역으로 그룹화하고, 모바일 프락시는 서비스를 요청하는 이동 사용자의 위치를 기반으로 헬스케어 서비스 수행의 연속성을 지원한다. 그리고 상황정보에 따라 헬스케어 맞춤형 정보 서비스가 지원되도록 했다. 상황정보 지원 시스템이 제공하는 서비스는 이동성을 고려한 멀티미디어 서비스와 시간 및 위치에 따라 처방 주의 정보 및 스케줄 알림 서비스로 구현했으며, 상황정보 지원 헬스케어 서비스의 수행 결과를 원격 데스크 탑과 상황정보 서비스 인터페이스를 통해 확인했다.

  • PDF

Sensor Fusion for Seamless Localization using Mobile Device Data (센서 융합 기반의 실내외 연속 위치 인식)

  • Kim, Jung-yee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1994-2000
    • /
    • 2016
  • Technology that can determine the location of individuals is required in a variety of applications such as location based control, a personalized advertising. Missing-child prevention and support for field trips, and applications such as push events based on the user's location is endless. In particular, the technology that can determine the location without interruption in the indoor and outdoor spaces have been studied a lot recently. Because emphasizing on accuracy of the positioning, many conventional research have constraints such as using of additional sensing devices or special mounting devices. The algorithm proposed in this paper has the purpose of performing the positioning only with standard equipment of the smart phone that has the most users. In this paper, sensor Fusion with GPS, WiFi Radio Map, Accelerometer sensor and Particle Filter algorithm is designed and implemented. Experimental results of this algorithm shows superior performance than the other compared algorithm. This could confirm the possibility of using proposed algorithm on actual environment.

Improvement of Indoor Positioning Accuracy using Smart LED System Implementation (스마트 LED 시스템을 이용한 실내위치인식 정밀도 개선)

  • Lee, Dong Su;Huh, Hyeong Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.786-791
    • /
    • 2021
  • In this paper, in order to minimize limitations such as signal interference and positioning errors in existing indoor positioning systems, a smart LED-based positioning system for excellent line-of-sight radio environments and precise location tracking is proposed to improve accuracy. An IEEE 802.4 Zigbee module is mounted on the SMPS board of a smart LED; RSSI and LQI signals are received from a moving tag, and the system is configured to transmit the measured data to the positioning server through a gateway. For the experiment, the necessary hardware, such as the gateway and the smart LED module, were separately designed, and the experiment was conducted after configuring the system in an external field office. The positioning error was within 70cm as a result of performing complex calculations in the positioning server after transmitting a vector value of the moving object obtained from the direction sensor, together with a signal from the moving object received by the smart LED. The result is a significantly improved positioning error, compared to an existing short-range wireless communications-based system, and shows the level at which commercial products can be implemented.

A Study on Distance Calculation Revision Algorithm using the Filtering of RSSI Measurement Results (RSSI 측정결과 필터링을 이용한 거리계산 보정 알고리즘에 관한 연구)

  • Kim, Ji-seong;Kim, Yong-kab
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.25-31
    • /
    • 2017
  • The indoor location based service proposed in the study was assigned to target a moving user. Positioning in the outdoor environment is accurate while using GPS. However, in an indoor environment, positioning is inaccurate and difficult. In order to overcome this, studies of various techniques for positioning based on wireless communication such as Wi-Fi, Zigbee and Bluetooth are being performed. The RSSI value and the delivery signal of the bluetooth beacon are measured according to the distance, and to a database. It was applied calculating the value for the average RSSI and the RSSI filtering feedback. Filtering is used to reduce the error of the RSSI values that are measured at long distance. When average and feedback filtering coefficient are set with 0.5, irregular and highly RSSI values are decreased. As the distance increases, the range of error is confirmed to have a reduction when using a distance calculation correction algorithm. Finally, when using the RSSI measurement results filtering, it corrects an unstable signal. Also, the distance correction algorithm is used to reduce a range of errors.

Smart Book Finder Based on Indoor Positioning Technology (실내 측위 기술을 이용한 스마트 북 파인더)

  • Lee, Byeong-gyu;Seo, Hyun-Bin;Chi, Seong-Hwan;Han, So-Jeong;Kim, Joong-Jae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.308-311
    • /
    • 2019
  • 사람들이 도서관에 비치된 컴퓨터를 통해 원하는 도서가 있는지 검색하는 데에는 시간이 얼마 걸리지 않지만, 그 도서의 위치를 찾는 데에는 많은 시간이 소요되는데 그 이유 중 하나는 바로청구 기호이다. 각종 숫자와 문자로 이루어진 청구기호는 이에 익숙하지 않은 사람들에게는 암호로 보일 뿐이다. 이에 본 논문에서는 이를 해결하기 위해 사용자가 간단한 어플리케이션을 통해 원하는 도서를 쉽게 검색하고 그 위치를 어플리케이션 상에서 확인할 수 있으며 서가에 부착된 LED 를 통해 도서의 정확한 위치를 확인할 수 있는 스마트 북 파인더를 구현하였다.

A Study on the Technology Development of User-based Home Automation Service (사용자 위치기반 홈오토메이션 서비스 기술 개발에 관한 연구)

  • Lee, Jung-Gi;Lee, Yeong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.327-332
    • /
    • 2017
  • As Internet of Things (IoT) technology advances, there is a growing demand for location-based services (LBSs) to identify users' mobility and identity. The initial LBS system was mainly used to measure position information by measuring the phase of a signal transmitted from a global positioning system (GPS) satellite or by measuring distance to a satellite by tracking the code of a carrier signal. However, the use of GPS satellites is ineffective, because it is difficult to receive satellite signals indoors. Therefore, research on wireless communications systems like ultra-wide band (UWB), radio frequency identification (RFID), and ZigBee are being actively pursued for location recognition technology that can be utilized in an indoor environment. In this paper, we propose an LBS system that includes the 2.45GHz band for chirp spread spectrum (CSS), and the 3.1-10.6GHz band and the 250-750MHz bands for UWB using the IEEE 802.15.4a standard for low power-based location recognition. As a result, we confirmed that the 2.45GHz Industrial, Scientific and Medical (ISM) band RF transceiver and the ranging function can be realized in the hardware and has 0dBm output power.

Development of Lighting Control System Based on Location Positioning for Energy Saving (에너지 절약을 위한 위치측위 기반 조명 제어 시스템 개발)

  • Cho, Kyoung-Woo;Jeon, Min-Ho;Oh, Chang-Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.2968-2974
    • /
    • 2014
  • When lighting has installed indoor, we control lighting using human-detecting sensors for people who pass at night and places that are lack of quantity of light. However, malfunction can be caused by positions of inappropriate sensors, and in the case of passages of big buildings, it is a problem that even after a person pass, light apparatuses are turned on for a long time. In this paper, we propose lighting control system based on location positioning for energy saving that control lighting in accordance with passers's position through indoor location positioning. This system use the fingerprinting technology that is one of the location positioning technologies and RSSI data that is collected by a smart device. Using those, it can turn on only lightings that are included in the positioned location and reduce unnecessary power consumption. As a result of experiment, on condition that four people were existing and illumination was 308 lux, we assured reduction effect of 49 Wh.

Study of Localization Based on Fingerprinting Technique Using Uplink CSI in Cloud Radio Access Network (클라우드 무선접속 네트워크에서 상향링크 채널 상태 정보를 이용한 핑거프린팅 기반 실내 측위에 관한 연구 시스템)

  • Woo, Sangwoo;Lee, Sangheon;Mun, Cheol
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.2
    • /
    • pp.71-77
    • /
    • 2019
  • With 5G standards proceeding in earnest and increasing demand for services of indoor localization, research on indoor location recognition is being studied in various industrial fields, and research based on fingerprint recognition technology using Wireless Local Area Network (WLAN) is representative. In this paper, we propose an indoor positioning system based on fingerprinting technique that uses Cloud Radio Access Network (C-RAN) architecture and Channel State Information (CSI). In order to improve the performance in indoor positioning, we combined existing fingerprinting method and K nearest neighbor (KNN) technology which is one of the machine running technique. The performance improvements of the proposed indoor positioning system was verified by comparative experiments with the existing localization technique in a indoor localizztion testbed.