• Title/Summary/Keyword: 신호 연동화

Search Result 63, Processing Time 0.019 seconds

The Improvement of Signal Timing Model with Mixed Integer Linear Programming for Coordinated Arterials (혼합정수선형계획법을 응용한 간선도로 신호연동화모형 개선에 관한 연구)

  • 신언교;김영찬
    • Journal of Korean Society of Transportation
    • /
    • v.15 no.3
    • /
    • pp.53-74
    • /
    • 1997
  • 신호연동화모형에서 통과폭모형은 지체를 최소화하지 못하고 지체도모형은 좌회전현시순서를 최적화하지 못한다. 이러한 모형의 단점을 극복하고자 개발된 KS_SIGNAL은 지체를 최소화하는 신호연동화모형이지만 지체를 산정하는데 있어 많은 한계를 갖고 있다. 본 연구에서는 기존에 개발된 KS_SIGNAL의 지체모형을 개선하여 보다 우수한 연동신호시간과 현시순서를 산정해주는 신호최적화모형(KS_SIGNAL II)을 개발하여 FORTRAN 언어로 전산화하였다. 개발된 모형은 다양한 평가를 통하여 기존 모형들보다 전반적으로 우수한 것으로 입증되었다. 본 모형을 통하여 차량 출발 및 도착형태에 따른 대기차량 소거시간을 고려하는 옵셋 산정이 가능해져 지체를 최소화하는 간선도로의 신호최적화모형으로 활용될 경우 도로기능제고 및 지체도 감소에 의한 편익을 얻을 수 있다.

  • PDF

A Study on the Signal Progression System for the Disaster Prevention of Traffic Facilities - A case study of Dong Moon Ro in Kwangju City - (교통시설 재해방지를 위한 신호체계 연동화에 관한 연구 - 광주시 동문로를 중심으로 -)

  • Hwang, Eui Jin;Ryu, Ji Hyeob;Lim, Ik Hyun
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.3
    • /
    • pp.59-67
    • /
    • 2008
  • The most influential facility causing traffic disaster on the urban road is intersection. Accordingly, this study elected a region for case study from seabang three-way junction, partial section of Dongmoon Ro in Kwang-Ju city, to the intersection of Mudeung Library Entrance. It is believed that the signal progression is very effective on the basis of short interval of intersection and massive traffic volume. The signal progression was simulated by using TRANSYT-7F model. The following is summary of the simulation: According to the change of cycle length, P.I. delay and fuel consumption showed the tendency of being increased in case that cycle length becomes long or short, centering around the best cycle length. In the event of progressing the cycle length, the average speed per vehicle is increased by 11.39Km per hour and P.I value is improved by 40.65% so that it resulted in 42.86% improvement in the total travel time. Moreover, the fuel consumption in line with the progression practice produced fuel saving of 31.04%.

  • PDF

A Development of the Traffic Signal Progression Model for Tram and Vehicles (간선도로 트램 전용차로에서 트램과 일반차량을 위한 신호최적화 모형 개발)

  • Lee, In-Kyu;Kim, Youngchan
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.3
    • /
    • pp.280-292
    • /
    • 2014
  • A tram has been the focus of a new public transportation that can solve a traffic jam, decreasing of public transit usage and environmental problem in recent years. This study aims to develop a signal optimization model for considering the traffic signal progression of tram and vehicles, when they are operated simultaneously in the same signalized intersections. This research developed the KS-SIGNAL-Tram model to obtain a minimum tram bandwidth and to minimize a vehicle's delay to perform a tram passive signal priority, it is based on the KS-SIGNAL model and is added to the properties of a tram and it's system. We conducted a micro simulation test to evaluate the KS-SIGNAL-Tram model, it showed that the developed optimization model is effective to prevent a tram's stop on intersection, to reduce a tram's travel time and vehicle's delay.

Development of Traffic State Classification Technique (교통상황 분류를 위한 클러스터링 기법 개발)

  • Woojin Kang;Youngho Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.81-92
    • /
    • 2023
  • Traffic state classification is crucial for time-of-day (TOD) traffic signal control. This paper proposed a traffic state classification technique applying Deep-Embedded Clustering (DEC) method that uses a high dimensional traffic data observed at all signalized intersections in a traffic signal control sub area (SA). So far, signal timing plan has been determined based on the traffic data observed at the critical intersection in SA. The current method has a limitation that it cannot consider a comprehensive traffic situation in SA. The proposed method alleviates the curse of dimensionality and turns out to overcome the shortcomings of the current signal timing plan.

A Numerical Algorithm for Evaluating Progression Efficiency along Coordinated Arterials Using Shock Wave Theory (충격파이론을 응용한 간선도로 신호연동화의 효율 평가를 위한 알고리즘의 개발)

  • Kim, Young-Chan;Baek, Hyon-Su
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.2
    • /
    • pp.83-90
    • /
    • 1999
  • A computer algorithm is presented that evaluate the performance of coordinated signal timing plans for the signalized arterials. The procedures calculating delay and stops are based on Michalopoulos's analytical model derived from shock wave theory. The delay-offset relationship predicted from the algorithm produced consistent results with the delays venerated by TRANSYT-7F. From performance test, the delays estimated using the proposed a1gorithm are shown to be sensitive to the quality of progression as well as to traffic demand, link length, and turning flow ratio from upstream signal.

  • PDF

Application and Evaluation of a Traffic Signal Control Algorithm based on Travel Time Information for Coordinated Arterials (연동교차로를 위한 통행시간기반 신호제어 알고리즘의 현장 적용 및 평가)

  • Jeong, Yeong-Je;Kim, Yeong-Chan
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.179-187
    • /
    • 2009
  • This study develops a real-time signal control algorithm based on sectional travel times and includes a field test and evaluation. The objective function of the signal control algorithm is the equalization of delay of traffic movements, and the main process is calculating dissolved time of the queue and delay using the sectional travel time and detection time of individual vehicles. Then this algorithm calculates the delay variation and a targeted red time and calculates the length of the cycle and phase. A progression factor from the US HCM was applied as a method to consider the effect of coordinating the delay calculation, and this algorithm uses the average delay and detection time of probe vehicles, which were collected during the accumulated cycle for a stabile signal control. As a result of the field test and evaluation through the application of the traffic signal control algorithm on four consecutive intersections at 400m intervals, reduction of delay and an equalization effect of delay against TOD control were confirmed using the standard deviation of delay by traffic movements. This study was conducted to develop a real-time traffic signal control algorithm based on sectional travel time, using general-purpose traffic information detectors. With the current practice of disseminating ubiquitous technology, the aim of this study was a fundamental change of the traffic signal control method.

Traffic Signal Control Strategy for Passive Tram Signal Priority on City Arterial (도시부 간선도로의 고정식 트램 우선신호를 위한 교통신호운영 전략)

  • Jeong, Young-Je;Kim, Young-Chan;Kim, Dae-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.1
    • /
    • pp.27-41
    • /
    • 2011
  • This research proposes new tram signal coordination model, called MAXBAND MILP-Tram for a passive tram signal priority strategy. The proposed model was formulated based on the MAXBAND model that was a traditional arterial signal optimization model. The model could calculate the bandwidth solutions for both general-purpose-lane traffic and median-tram-lane traffic. Lower progression speed are applied for the tram traffic considering lower running speed and dwell time at the stations. A phase sequence procedure determines the green times and left-turn phase sequences for tram traffic in median tram lane. To estimate the performance of the MILP-Tram model, the control delay of trams were estimated using the micro simulation model, VISSIM. The analysis results showed 57 percent decrease of the tram compared to the conventional signal timing model. The delay for car, however, increased 18 percent. The sensitivity analysis indicated that the passive tram signal priority strategy using the offset and phase sequence optimization was effective in reducing the person delay under the congested traffic condition.

A Study on Improvement of Run-Time in KS-SIGNAL, Traffic Signal Optimization Model for Coordinated Arterials (간선도로 연동화 신호최적화 모형 KS-SIGNAL의 수행속도 향상을 위한 연구)

  • 박찬호
    • Proceedings of the KOR-KST Conference
    • /
    • 1998.10a
    • /
    • pp.252-260
    • /
    • 1998
  • 본 논문은 기개발된 간선도로 연동하 신호최적화 모형인 KS-SIGNAL의 최적화 수행속도를 향상하기 위한 새로운 모형식 및 방법론을 제시하고 평가하였다. 본 논문에서는 탑재, 좌회전 현시순서에 관한 제약식 추가 등의 3단계 작업을 실시하였다. 첫 번째 단계인 모형식의 수정에 있어서는 기존의 모형식에서 변수로 사용하던 대가차량 소거시간을 상수로 산정함으로써 일부 제약식 및 변수를 소거시킬 수 있었으며, 두 번째 단계에서는 선형계획식의 해를 구하기 위한 툴로 사용되는 Wondow용 Lindo library를 탑재, 새로이 변형된 형식의 모형식을 제안한다. 마지막으로 세 번째 단계에서는 좌회전 현시 순서에 관한 제약식을 추가함으로써 최적화 작업에 대한 경우의 수를 줄임으로써 수행속도를 향상시키는 방법론에 대해 제시한다. 결론적으로 기존의 KS-SIGNAL과 비교해 최적화 수행속도는 99%이상 향상되었으며, 도출된 해 또한 타 모형식과 비교해 우수한 결과를 나타냈다.

  • PDF