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A Numerical Algorithm for Evaluating Progression Efficiency
along Coordinated Arterials Using Shock Wave Theory
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I . Introduction

The simulation of traffic stream flow has been
the subject of extensive research during the past
few decades. Although numerous traffic models
have been proposed and tested against field data
for uninterrupted flow, relatively few research
works have been done about the behavior of traffic
when it is interrupted. In urban arterials, traffic
interruptions occur mast frequently at signalized
intersections. In signalized arterials, coordination of
signals is one of the most complex problems in
traffic engineering practice. The efficiency of a coordi-
nation scheme can be evaluated using the traffic
simulation model describing the movements of platoons
in signalized links. This paper aims at proposing
an algorithm to evaluate the performance of coordinated
signal timing plans for the signalized arterials.

TRANSYT (Robertson 1969) is the most widely
used tool for the simulation and optimization of the
signal timing for signalized networks. It simulates
traffic behavior using the well-known traffic model
for describing platoon behavior engaged in TRANSYT,
such as Robertson’s platoon dispersion model.
TRANSYT has some shortcomings in modeling
traffic, however. One is that TRANSYT describes
the platoon dispersion behavior reasonably well,
but does not consider the platoon compression.
The phenomenon of the platoon compression happens
in real~world traffic. Another is that TRANSYT
provides disutility measures like vehicular delay
occurring only at stop lines of intersections during
red time, but does not provide the disutility
measures along links. Actually, vehicular delay
occurs at the road section between adjacent inter-
sections as well as at intersection itself.

The hydrodynamic theory, which was developed
by Lighthill and Whitham (1955), has been recognized
as one of the outstanding models in analyzing
traffic phenomena. Stephanopoulos and Michalo-
poulos (1979) suggested the dynamics of formation
and dissipation of queues at isolated signalized
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intersections by applying the theory of shock
wave derived from the hydrodynamic theory.
Michalopoulos et al. (1980a, 1980b) developed a
mathematical modeling of the traffic dynamics in
links between signalized intersections. Applying
the shock wave theory, they derived analytical
expressions for describing platoon propagation along
the road. This model reflects not only traffic platoon
dispersion but also platoon compression. Since
the model describes the evolution of traffic waves
and queues in both time and space, rather than
time alone, it provides traffic performance at not
only intersection stop-line but also the road
section between adjacent intersections,

Authors felt the necessity of more works in
applying the Michalopoulos's model to various
traffic, roadway and signalized conditions due to
the limitation of its analytical solution approach.
Analytical derivation of the large number of possible
queue length developments is tedious and almost
impossible in real problem application. Computerized
algorithm can handle such an huge computational
work efficiently. In this paper, an algorithm for
numerical solution based on the Michalopoulos’s
analytical model is presented. which is applicable
for personal computers with ease. Michalopoulos's
model provides density values in time-space regions
as final solution. The measures of effectiveness
adopted in general for describing the operating
performance of signal arterials are delay and travel
speed. Thus, a conversion model of the density
values into the delay was developed in this paper.
The algorithm can be extended to modeling multi-
phase signal operations with ease.

. Michalopoulos” Analytical Model

Before describing a computer algorithm, we
briefly introduce the Michalopoulos’s analytical
model. For more detailed descriptions, refer to
Michalopoulos et al. (1980a).

Consider the system of two signalized intersections
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shown in the lefi-hand-side of (Figure 1). Assuming
two-phase signal operation of both intersections,
the right-hand-side of the figure shows an example
of shock wave developments between two signalized
intersections. {Figure 2) shows a flow-density (g-k)
curve. Two platoons with traffic flows, g1, g2 and
the corresponding densities ks, k2 respectively,
depart from upstream intersection. Tangents at
points 1 and 2 (h(ks), h(ks)) represent the wave
speed for these two platoons. The intersection of
these two sets of waves has a slope equal to the
chord connecting the two points on the q-k curve,
and this intersection represents the path of the
shock wave. It should be noted that the waves
on the time-space diagram in this analysis are
not trajectories of vehicles but lines of constant
flow and thus lines of constant speed. (Gerlough,
1975)

As shown in Figure 1, the combinations of two
intersecting waves generate various types of shock
waves. Every possible shock waves falls into 13
patterns as shown in {Figure 3). The path of each
shock wave pattern is listed in (Table 1). In this
table, ty represents the starting time of the shock wave
generation: £3, the termination time of green interval

of downstream intersection : and dist, link length.
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(Figure 3) Shock Wave Patterns

For instance, shock-wave line PQ in (Figure 1) is
generated when wave h(k;) intersects wave h(ks).



which belongs to Pattern No 5 in (Figure 3). The

generated shock wave moves with speed w2 given by

If the g-k curve is assumed linear, the above
equation becomes:

u12=%(kj—k2—kl)

J

where ur represents free flow speed and k;, jam

density. The path of line PQ is given by
X =%(kj—k1—k2)(t—g1) (1)
‘)

where g represents green interval for flow qi.
Equation 1 corresponds to Equation 5 in (Table 1).
The path of the remaining shock-wave lines can
be derived in similar manner.

When two shock waves collide, new shock
wave is generated. The pattern of the new shock

wave is determined based

{Table 1) Equations of Shock Wave Pattern
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on the types of colliding shock waves. For example,
when shock-wave SQ meets shock-wave PQ at
point @, shock-wave QE is newly generated, as
shown in (Figure 1). The coordinates of the meet
points (C, D, E, F and Q) which are generated
due to the intersection of two shock-wave lines or
curves can be solved from the geometric relationship.

The platoon dynamics occurring signalized arterials
can be described through calculating the shock-
wave paths and colliding points. Because the full
description of all equations is quite lengthy, we
do not describe any further in this paper. Readers
interested in further details should consult
Michalopoulos (1980a).

. Numerical Algorithm

The shock-wave developments within the link
are directly affected by the traffic arrivals, the
link length, the signal control policy and the initial
condition. Due to the numerous combinations of
these parameters, a large number of downstream
queue formations are possible. Because analytical
derivation of the large number of possible queue
length developments was tedious and almost
impossible, a numerical algorithm is suggested in
this paper. The conversion process of density values
into delay should be added for practical appli-
cations. The following seven steps describes the
proposed algorithm for calculating delay and queue
length occurring due to the effect of progression
quality.

Step 1. Input data.

Input data required are! major flow g and
minor flow gz signal timing data such as common
cycle length, green times for two intersections,
and offset value: link length: and the gk curve.
Even though the linear g-k relationship was used
in this section for simplicity, the general ak
curve using a differentiable function could be

applicable with minor efforts.
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Step 2. Calculate density values and wave speeds.
When the linear g-k curve is used, the density

k; and wave speed h(k:) corresponding to flow g

can be calculated using the following equations:

, N2
k|=—ki— K —ﬁqx
2 2 us

h(kr) = uf(l - %)

J

Step 3. Prepare shock wave table.

A shock wave is generated when two waves
intersect. The shock wave types fall into 13 patterns
as shown in (Figure 3>. The path of each shock
wave pattern is listed in (Table 1).

Step 4. Calculate shock wave location.

The procedure wuses the time-marching
technique: that is, the solution is progressively
obtained by marching in steps of time. The
calculation initiates at the starting time ¢; of
main phase gr of upstream intersection, as shown
in (Figure 4>. At time t, the distance coordinates
of shock waves are calculated using the equations

listed in (Table 1).
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(Figure 4) Shock Wave Computation Using Time-
Marching Approach
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Step 5. Check the collision of two shock waves.

When two shock waves collide, new shock wave
is generated.

Thus, the checking procedure is conducted in
this step. If the collision occurs at current time
step, the colliding shock waves are discarded,
and the path of the new shock wave is calculated

for next time step. Otherwise, go to next step.

Step 6. Caleulate the area of homogeneous density region.

At time step t. several different density regions
occur along link. The distance of the individual
density region should be accumulated during
entire simulation period, and then the area of
each region is determined after processing last
time step. Even if the procedure starts at ti,
actual simulation period is one cycle from ts, as
show in (Figure 4). Thus, the observation region
is a rectangular surrounded by Points A, B, C,
and D.

Step 7. Calculate delay.

The area S for individual density region i is
directly related to the delay occurred at the link
between two intersections. Two types of delays
are obtained: intersection delay and link delay.
From (Figure 4>, regions 1 and 2 are related to
the intersection delay: and regions 3, 4, 5, 6, 7
and 8, the link delay. The intersection delay du
and the link delay d; are calculated using the

following equations.

2
e Z‘,:l kiSi
Clqi/ A+ g2/ A2)

z,;_ kiSi I
di=— &=
Clg/M+q2/A2) w

where C denotes cycle length: {;, green ratio
g/C. The variables used in the equations above
have the following units: d, and d; in sec/veh: k
in veh/m: S in m-sec: C in sec: g in veh/sec:
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and ur in m/sec.

General delay equations consist of uniform
delay term and random delay term. Since random
fluctuation of traffic arrival was not considered
in the model development, the intersection delay
ds calculated in this procedure is the uniform
delay. The random delay term dr should be added
to the delay equation. Because the development
of the random delay is not a concern of this
paper, one might adopt one of the approved
delay equations like the 1985 HCM delay
equation (1985). Total link delay per vehicle is
expressed as:

di=du+dr+d

The algorithm described above is focused on
the calculation of delay. Queue lengths and the
number of stops could be calculated using similar
manners. For details, consult Baek (1998).

V. Performance Test

To test the ability of the proposed algorithm to
predict delays for progressed movements, the
TRANSYT-7F simulation program (1983) was used
to estimate delays for a simplified arterial system.
The arterial chosen as base case was assumed to
have the following characteristics:

C = 75 seconds
gi = 35 seconds
&3 = 30 seconds
v/c = 0.8

a/ee =4

and, d = 600 meter

To explore the effect of demand level, the following
v/c ratios were tested: 0.6(low demand), 0.8(medium
demand), and 0.9(heavy demand). (Figure 5) shows
the comparison of estimated uniform delay du between
TRANSYT-7F and the proposed algorithm. In general,
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delays predicted by the proposed algorithm appear
to be close to those calculated by TRANSYT-TF. The
proposed algorithm has a tendency to slightly overesti-
mate delay at the offset range less than the
minimum delay offset values.

To test the reasonability of the proposed algorithm,
two scenarios were evaluated over the entire range
of offset intervals. One used three link lengths d :
400, 600, and 800 meter: and the other employed
three turning volume ratio gi/gz from upstream
signal: 2, 4, and 6.
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(Figure 5) Delay-Offset Analysis Comparing the
Proposed Algorithm With TRANSYT-7F
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(Figure 7) The Delay Predicted by Changing Turning
Volume Ratios

(Figure 6) shows the delay predicted by the
proposed algorithm according to different link lengths.
From this figure, it is found that the optimal
offsetincreases as link lengths become longer, as
expected. Minimum delay value for each link length
increases slightly, as link length becomes longer.
In long link, progression effect in reducing delay
is diminished owing to the platoon dispersion
phenomena.

The delay predicted by changing turning volume
ratios is shown in (Figure 7). As side-street flow
becomes closer to main-street flow, the delay-
offset relationship becomes flatter. This result

was expected.

V. Conclusions

A numerical algorithm is presented that evaluate
the performance of coordinated signal timing
plans for the signalized arterials. From performance
test, it was observed that the algorithm performed
reasonably well. The delay estimated using the
proposed algorithm are shown to be sensitive to
the quality of progression, as well as to traffic
demand, link length, and turning flow ratio from
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upstream signal. The delay-offset relationship
predicted from the algorithm produced consistent
results with the delays generated by TRANSYT-7F.
The advantage of the proposed algorithm over the
TRANSYT model lies in a) modeling the phenomen-
on of platoon dispersion as well as compression,
engaged in the shock wave theory (Michalopoulos
et al. 1980): b) computing link delay.

The second phase of this research will be to
collect field data to calibrate the g-k curve, and
to conduct performance test of the algorithm using
actual data. The algorithm could be developed to
be a simulation model for signalized arterials by
improving the algorithm and adding auxiliary
features. This research is under way by authors.
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