• Title/Summary/Keyword: 신호변환

Search Result 2,729, Processing Time 0.036 seconds

Effects of Tropospheric Delay Models for GPS Time Transfer (GPS 시각 전송에서의 대류층 지연 모델 영향 비교)

  • Yu, Donghui
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.139-141
    • /
    • 2014
  • This paper shows effects of tropospheric delay models among delay features occurred when GPS code signal is transferred for GPS Time Transfer. GPS time transfer uses CGGTTS as the international standard format. For geodetic GPS receiver, ROB has provided r2cggtts software which generates CGGTTS data from RINEX data and all laboratories participated in TAI link uses the software and send the CGGTTS results periodically. Though Saastamoinen model and Niell mapping function are commonly used in space geodesy, r2cggtts software applied NATO model and CHAO mapping function to the tropospheric delay model. Hence, this paper shows effects of two tropospheric delay models implementing Saastamoinen model and Niell mapping function for the time offset.

  • PDF

Active pulse classification algorithm using convolutional neural networks (콘볼루션 신경회로망을 이용한 능동펄스 식별 알고리즘)

  • Kim, Geunhwan;Choi, Seung-Ryul;Yoon, Kyung-Sik;Lee, Kyun-Kyung;Lee, Donghwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.106-113
    • /
    • 2019
  • In this paper, we propose an algorithm to classify the received active pulse when the active sonar system is operated as a non-cooperative mode. The proposed algorithm uses CNN (Convolutional Neural Networks) which shows good performance in various fields. As an input of CNN, time frequency analysis data which performs STFT (Short Time Fourier Transform) of the received signal is used. The CNN used in this paper consists of two convolution and pulling layers. We designed a database based neural network and a pulse feature based neural network according to the output layer design. To verify the performance of the algorithm, the data of 3110 CW (Continuous Wave) pulses and LFM (Linear Frequency Modulated) pulses received from the actual ocean were processed to construct training data and test data. As a result of simulation, the database based neural network showed 99.9 % accuracy and the feature based neural network showed about 96 % accuracy when allowing 2 pixel error.

Force Transmission in Cellular Adherens Junction Visualized by Engineered FRET Alpha-catenin Sensor (형광공명에너지전이 알파카테닌 센서를 활용한 세포 부착접합부에서의 힘 전달 이미징)

  • Jang, Yoon-Kwan;Suh, Jung-Soo;Suk, Myungeun;Kim, Tae-Jin
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.366-372
    • /
    • 2021
  • Cadherin-Catenin complex is thought to play an essential role in the transmission of force at adherens junction. Due to the lack of proper tools to visualize and detect mechanical force signals, the underlying mechanism by which the cadherin-catenin complex regulates force transmission at intercellular junctions remains elusive. In this study, we visualize cadherin-mediated force transmission using an engineered α-Catenin sensor based on fluorescence resonance energy transfer. Our results reveal that α-catenin is a key force transducer in cadherin-mediated mechanotransduction at cell-cell junctions. Thus, our finding will provide important insights for studying the effects of chemical and physical signals on cell-cell communication and the relationship between physiological and pathological phenomena.

Development of Applications for Recording Ore Production Data and Writing Daily Work Report of Dump Truck in Mining Sites (광산 현장의 원석 생산 데이터 기록 및 덤프트럭 작업일지 작성을 위한 애플리케이션 개발)

  • Park, Sebeom;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.32 no.2
    • /
    • pp.93-106
    • /
    • 2022
  • This study developed applications that allows truck drivers to record ore production data using smart devices at mine sites and to create a daily work report (operation report) in a PC environment. For this, four operating mines in Korea were selected as study areas, and daily work reports used there were investigated. The information elements included in the daily work report of each mine were analyzed. Because the information to be collected for writing ore production data and format of report are different for each mine, four types of applications were developed for the study areas. Ore production data could be recorded by receiving a signal from a Bluetooth beacon and by operating the application directly by the truck driver. The collected data files are uploaded to the cloud server, and the uploaded data files can be converted into a daily work report using the developed applications in a PC environment.

Implementation of ICT-based Underwater Communication Monitoring Device for Underwater Lifting (수중구조를 위한 ICT 기반 수중통신 모니터링 장치 구현)

  • Yoon, Jong-Hwa;Kang, Sang-iL;Yoon, Dal-Hwan
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.396-400
    • /
    • 2022
  • In this study, an ICT-based underwater communication monitoring device for underwater structures is implemented based on lifting fixture that transport human bodies found on the seabed to sea level. The lifting fixture is packaged with a retback, sideback, and cartridge that injects air. Monitoring systems are developed in a mobile manner in a portable structure. The underwater ultrasonic sensor signal is supplied using a USB port, and the O/S consists of Linux. For the underwater communication dong test, a measurement test was conducted in real time from 6m to 40m in depth on the east coast. The ultrasonic sound sensor is converted to 2,400 bps to verify the transmission error according to the duality. The communication speed of sensor to monitoring is 115,200 bps, and the speed of communication from controller to receiver is 2,400 bps. In the commercialization stage of the lifting device, it is easy to develop a low-end type and the compatibility is wide.

Vibration Data Denoising and Performance Comparison Using Denoising Auto Encoder Method (Denoising Auto Encoder 기법을 활용한 진동 데이터 전처리 및 성능비교)

  • Jang, Jun-gyo;Noh, Chun-myoung;Kim, Sung-soo;Lee, Soon-sup;Lee, Jae-chul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1088-1097
    • /
    • 2021
  • Vibration data of mechanical equipment inevitably have noise. This noise adversely af ects the maintenance of mechanical equipment. Accordingly, the performance of a learning model depends on how effectively the noise of the data is removed. In this study, the noise of the data was removed using the Denoising Auto Encoder (DAE) technique which does not include the characteristic extraction process in preprocessing time series data. In addition, the performance was compared with that of the Wavelet Transform, which is widely used for machine signal processing. The performance comparison was conducted by calculating the failure detection rate. For a more accurate comparison, a classification performance evaluation criterion, the F-1 Score, was calculated. Failure data were detected using the One-Class SVM technique. The performance comparison, revealed that the DAE technique performed better than the Wavelet Transform technique in terms of failure diagnosis and error rate.

Introduction to System Modeling and Verification of Digital Phase-Locked Loop (디지털 위상고정루프의 시스템 모델링 및 검증 방법 소개)

  • Shinwoong, Kim
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.577-583
    • /
    • 2022
  • Verilog-HDL-based modeling can be performed to confirm the fast operation characteristics after setting the design parameters of each block considering the stability of the system by performing linear phase-domain modeling on the phase-locked loop. This paper proposed Verilog-HDL modeling including DCO noise and DTC nonlinear characteristic. After completing the modeling, the time-domain transient simulation can be performed to check the feasibility and the functionality of the proposed PLL system, then the phase noise result from the system design based on the functional model can be verified comparing with the ideal phase noise graph. As a result of the comparison of simulation time (6 us), the Verilog-HDL-based modeling method (1.43 second) showed 484 times faster than the analog transistor level design (692 second) implemented by TSMC 0.18-㎛.

Shooting sound analysis using convolutional neural networks and long short-term memory (합성곱 신경망과 장단기 메모리를 이용한 사격음 분석 기법)

  • Kang, Se Hyeok;Cho, Ji Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.312-318
    • /
    • 2022
  • This paper proposes a model which classifies the type of guns and information about sound source location using deep neural network. The proposed classification model is composed of convolutional neural networks (CNN) and long short-term memory (LSTM). For training and test the model, we use the Gunshot Audio Forensic Dataset generated by the project supported by the National Institute of Justice (NIJ). The acoustic signals are transformed to Mel-Spectrogram and they are provided as learning and test data for the proposed model. The model is compared with the control model consisting of convolutional neural networks only. The proposed model shows high accuracy more than 90 %.

The development of non-contact soil moisture sensors using Rayleigh waves and a fully convolutional network (레일리파와 딥러닝를 활용한 비접촉식 토양수분센서 개발)

  • Seoungmin Lee;Dong Kook Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.223-223
    • /
    • 2023
  • 토양수분은 지표면과 지하 영역 사이에 존재하는 수분 및 열에너지의 분배를 제어하거나, 토양 영양분, 식물 성장 및 미생물 활동과 같은 다양한 환경 과정에 영향을 미치는 핵심 구성요소이다. 토양수분은 생태수문학 및 생지화학적 역학, 저수지 관리, 가뭄 및 홍수의 경고, 토양 수분 변화에 따른 작물 수확량 등을 이해하는 데 매우 중요한 역할을 한다. 따라서, 토양 수분의 정확한 측정은 필수적이며, 이러한 필요성에 따라 중력 측정법, 장력 측정법, 전기 저항법 및 시간-주파수 영역반사측정법 등의 다양한 측정 방법들이 다년간 개발되어 사용되었다. 다만, 앞선 방법들은 철저한 실험을 통해 높은 정확성을 확보하였지만, 토양 교란이 발생하는 단점이 존재하며 실험 현장 토양의 물리적, 생물학적, 그리고 화학적 특성의 보존은 매우 어려운 한계점을 가지고 있다. 따라서, 이러한 단점을 극복하기 위해, 본 연구에서는 레일리파를 이용한 비접촉식 비교란 토양수분 센서 개발을 목표로 한다. 모래, 실트, 점토와 같은 세 가지 특징적인 토양 유형에 따른 파동을 측정하고, 측정된 파동으로부터 토양 수분을 추정하기 위해 기존에 개발된 시간-주파수 방법을 활용하여 토양수분을 함께 측정하였다. 비접촉 파동신호를 토양수분으로 변환하기 위하여, fully convolutional network을 개발하였다. 개발한 모델의 결과 검증은 RMSE(Root Mean Square Error)를 활용하여 검증하였으며, 모래, 실트, 점토에서 각각 0.0131, 0.0021, 0.0034 m3 m-3으로 상대적으로 높은 정확성을 보였다. 즉, 본 연구에서 제시한 누출 레일리파를 사용한 비교란-비접촉 토양수분 측정 방법으로, 토양을 교란하지 않고 토양수분을 측정 할 수 있는 높은 가능성을 제시하였다.

  • PDF

Development of Radar Super Resolution Algorithm based on a Deep Learning (딥러닝 기술 기반의 레이더 초해상화 알고리즘 기술 개발)

  • Ho-Jun Kim;Sumiya Uranchimeg;Hemie Cho;Hyun-Han Kwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.417-417
    • /
    • 2023
  • 도시홍수는 도시의 주요 기능을 마비시킬 수 있는 수재해로서, 최근 집중호우로 인해 홍수 및 침수 위험도가 증가하고 있다. 집중호우는 한정된 지역에 단시간 동안 집중적으로 폭우가 발생하는 현상을 의미하며, 도시 지역에서 강우 추정 및 예보를 위해 레이더의 활용이 증대되고 있다. 레이더는 수상체 또는 구름으로부터 반사되는 신호를 분석해서 강우량을 측정하는 장비이다. 기상청의 기상레이더(S밴드)의 주요 목적은 남한에 발생하는 기상현상 탐지 및 악기상 대비이다. 관측반경이 넓기에 도시 지역에 적합하지 않는 반면, X밴드 이중편파레이더는 높은 시공간 해상도를 갖는 관측자료를 제공하기에 도시 지역에 대한 강우 추정 및 예보의 정확도가 상대적으로 높다. 따라서, 본 연구에서는 딥러닝 기반 초해상화(Super Resolution) 기술을 활용하여 저해상도(Low Resolution. LR) 영상인 S밴드 레이더 자료로부터 고해상도(High Resolution, HR) 영상을 생성하는 기술을 개발하였다. 초해상도 연구는 Nearest Neighbor, Bicubic과 같은 간단한 보간법(interpolation)에서 시작하여, 최근 딥러닝 기반의 초해상화 알고리즘은 가장 일반화된 합성곱 신경망(CNN)을 통해 연구가 이루어지고 있다. X밴드 레이더 반사도 자료를 고해상도(HR), S밴드 레이더 반사도 자료를 저해상도(LR) 입력자료로 사용하여 초해상화 모형을 구성하였다. 2018~2020년에 발생한 서울시 호우 사례를 중심으로 데이터를 구축하였다. 구축된 데이터로부터 훈련된 초해상도 심층신경망 모형으로부터 저해상도 이미지를 고해상도로 변환한 결과를 PSNR(Peak Signal-to-noise Ratio), SSIM(Structural SIMilarity)와 같은 평가지표로 결과를 평가하였다. 본 연구를 통해 기존 방법들에 비해 높은 공간적 해상도를 갖는 레이더 자료를 생산할 수 있을 것으로 기대된다.

  • PDF