• Title/Summary/Keyword: 신재생에너지 발전

Search Result 1,341, Processing Time 0.024 seconds

Economic Effects of the Post-2020 Climate Change Mitigation Commitments: From the Generation Industry's Perspective (Post-2020 신기후체제의 발전부문 대응에 따른 경제적 파급효과 분석)

  • Yun, Taesik;Lee, Bongyong;Noh, Jaeyup
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.136-148
    • /
    • 2016
  • We analyze economic effects of GHG reduction measures of the generation industry to meet 2030 GHG reduction target using the scenario based approach. We estimate the GHG emission of the Korean power industry in 2030 based on both the $7^{th}$ Electricity Supply & Demand Plan and the GHG emission coefficients issued by IAEA. We set up three scenarios for reduction measures by replacing the coal fired plants with nuclear power, renewable energy and carbon capture and storage. Once and for all, the nuclear power scenario dominates the other energy technologies in terms of GHG reduction quantities and economic effects.

$CO_2$ Removal Process Analysis and Modeling for 300MW IGCC Power Plant (300MW급 IGCC Power Plant용 $CO_2$ 제거공정 분석 및 모델링)

  • Jeon, Jinhee;Yoo, Jeongseok;Paek, Minsu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.130.2-130.2
    • /
    • 2010
  • 2020년까지 대형 CCS (Carbon Capture and Storage) Demo Plant 시장 (100MW 이상) 이 형성될 전망이다. 발전 부문에서 대규모 CCS 실증 프로젝트는 총 44개이며 연소전(41%), 연소후(28%), 순산소(3%) 프로젝트가 계획되어 있다. 순산소 연소 기술은 실증진입단계, 연소후(USC) 기술은 상용화 추진단계, 연소전 (IGCC) 기술은 실증완료 이후 상용화 진입 단계이다. IGCC 발전의 석탄가스화 기술은 타 산업분야에 서 상용화 되어있어 기술신뢰성이 높다. IGCC 단위설비 기술 개발을 통한 성능개선 및 비용절감에 대한 잠재력을 가지고 있기 때문에 미래의 석탄발전기술로 고려되고 있다. IGCC 기술은 가장 상용화에 앞서있지만 아직까지 IGCC+CCS 대형 설비가 운전된 사례가 전 세계적으로 없으며 미국 EPRI 등에서 Feasibility Study 단계이다. 현재 국책과제로 수행중인 300MW급 태안 IGCC 플랜트를 대상으로 향후 CCS 설비를 적용했을 경우에 대해 기술 타당성 검증을 목적으로 IGCC+CCS 모델링을 수행하였다. 모델링은 스크러버 후단의 합성 가스를 대상으로 하였다. Water Gas Shift Reaction (WGSR) 공정 및 Selexol 공정을 구성하여 최종 단에서 수소 연료를 생산할 수 있도록 하였다. WGSR 공정은 Co/Mo 촉매반응기로 구성되었다. WGSR 모델링을 통하여 주입되는 스팀량 (1~2 mol-steam/mol-CO) 및 온도 변화 ($220-550^{\circ}C$)에 따른 CO가스의 전환율을 분석하여 경제적인 설계조건을 선정하였다. Selexol 공정은 $H_2S$ Absorber, $H_2S$ Stripper, $CO_2$ Absorber, $CO_2$ Flash Drum으로 구성된다. Selexol 공정의 $CO_2$$H_2S$ 선택도를 분석 하였으며 단위 설비별 설계 조건을 예측하였다. 모델링 결과 59kg/s의 합성가스($137^{\circ}C$, 41bar, 가스 조성은 $CO_2$ 1.2%, CO 57.2%, $H_2$ 23.2%, $H_2S$ 0.02%)가 WGSR Process를 통해 98% CO가 $CO_2$ 로 전환되었다. Selexol 공정을 통해 $H_2S$ 제거율은 99.9%, $CO_2$제거율은 96.4%이었고 14.9kg/s의 $H_2$(86.9%) 연료를 얻었다. 모델링 결과는 신뢰성 검증을 통해 IGCC+CCS 전체 플랜트의 성능예측과 Feasibility Study를 위한 자료로 활용될 예정이다.

  • PDF

Brief Review of Silicon Solar Cells (실리콘 태양전지)

  • Yi, Jun-Sin
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.3
    • /
    • pp.161-166
    • /
    • 2007
  • Photovoltaic (PV) technology permits the transformation of solar light directly into electricity. For the last five years, the photovoltaic sector has experienced one of the highest growth rates worldwide (over 30% in 2006) and for the next 20 years, the average production growth rate is estimated to be between 27% and 34% annually. Currently the cost of electricity produced using photovoltaic technology is above that for traditional energy sources, but this is expected to fall with technological progress and more efficient production processes. A large scale production of solar grade silicon material of high purity could supply the world demand at a reasonably lower cost. A shift from crystalline silicon to thin film is expected in the future. The technical limit for the conversion efficiency is about 30%. It is assumed that in 2030 thin films will have a major market share (90%) and the share of crystalline cells will have decreased to 10%. Our research at Sungkyunkwan University of South Korea is confined to crystalline silicon solar cell technology. We aim to develop a technology for low cost production of high efficiency silicon solar cell. We have successfully fabricated silicon solar cells of efficiency more than 16% starting with multicrystalline wafers and that of efficiency more than 17% on single crystalline wafers with screen printing metallization. The process of transformation from the first generation to second generation solar cell should be geared up with the entry of new approaches but still silicon seems to remain as the major material for solar cells for many years to come. Local barriers to the implementation of this technology may also keep continuing up to year 2010 and by that time the cost of the solar cell generated power is expected to be 60 cent per watt. Photovoltaic source could establish itself as a clean and sustainable energy alternate to the ever depleting and polluting non-renewable energy resource.

An Evaluation of Heating Performance of the Heat Pump System Using Wasted Heat from Thermal Effluent for Greenhouse Facilities in Jeju (발전소 온배수 폐열을 이용한 제주 시설온실 냉난방용 열펌프 시스템의 난방성능 평가)

  • Moon, Sungbu;Hyun, Myung-Taek;Heo, Jaehyeok;Lee, Dong-Won;Lee, Yeon-Gun
    • Journal of Energy Engineering
    • /
    • v.28 no.1
    • /
    • pp.22-29
    • /
    • 2019
  • A heat pump system using wasted heat from thermal effluent to supply the heating energy can reduce energy consumption and emissions of greenhouse gases by greenhouse facilities nearby. The Jeju National University consortium constructed a heat pump system using the thermal effluent from the Jeju thermal power plant of KOMIPO to provide with cool or hot water to greenhouse facilities located 3 km from the power station. In this paper, the system configuration of the heat pump system was summarized, and the results of operations for demonstration of a heating performance carried out during the winter season in 2018 were investigated. The preoperational tests proved that the water temperature drop through the pipeline transporting extracted heat was less than $2^{\circ}C$. The COP (coefficient of performance) of the heat pump was higher than 4.0, and hot water with the maximum temperature of $50^{\circ}C$ could be supplied to greenhouse facilities by utilizing wasted heat from thermal effluent.

R&D Status of Na/NiCl2 Battery (Na/NiCl2 전지의 연구 개발 동향)

  • Kim, Hyun-Soo;Lee, Sang-Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.124-134
    • /
    • 2012
  • Environmental concerns over the use of fossil fuels and their resource constraints have spurred increasing interest of renewable energy, and the needs for energy storage from the renewable resources is getting rapidly increase. Na/$NiCl_2$ cell could be use electric vehicles as well as energy storage, because it has a high energy-efficiency, environmental-friendly, low cost. However, there remain several issues on improvement of materials, component, cell design, and process, to use in broad applications and to penetrate to market. This paper offers a comprehensive review on R&D status of the structure, chemistry, key materials, and cell design & manufacture for Na/$NiCl_2$ cells.

The Advanced Case Study for Investigation on Application of BIPV on Tall Building (초고층빌딩의 BIPV 적용성 검토를 위한 선진 사례 조사)

  • Lee, Jong-Min;Seok, Ho-Tae;Yang, Jeong-Hoon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.155-160
    • /
    • 2009
  • The increasingly high prices for oil, the exhaustion of fossil fuels as well as concern about global warming are driving rapid growth of alternative sources of energy in the world. The active solution for global environment and exhaustion of energy sources is to develop and popularize the technologies to use natural energy such as sunlight, wind, and water. PV(Photovoltaic) modules are efficient devices that has been considered a logical material for use in buildings. Recent advanced BIPV(Building Integrated PV) technology have rapidly made PVs suitable for direct integration into construction in the world. Recently, building has been higher and higher. Tall buildings have many advantages for BIPV such as wide facade area and no shading effect by the surrounding buildings. However. BIPV has not been applied for tall building facade yet. Therefore, the purpose of the research is to develop suitable BIPV for tall buildings and to put these technologies to practical use. Therefore, the purpose of the study is to investigate unification of BIPV to curtain wall to apply BIPV on tall building through research into advanced application of overseas BIPV cases.

  • PDF

Study on Optimal Control Algorithm of Electricity Use in a Single Family House Model Reflecting PV Power Generation and Cooling Demand (단독주택 태양광 발전과 냉방수요를 반영한 전력 최적운용 전략 연구)

  • Seo, Jeong-Ah;Shin, Younggy;Lee, Kyoung-ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.10
    • /
    • pp.381-386
    • /
    • 2016
  • An optimization algorithm is developed based on a simulation case of a single family house model equipped with PV arrays. To increase the nationwide use of PV power generation facilities, a market-competitive electricity price needs to be introduced, which is determined based on the time of use. In this study, quadratic programming optimization was applied to minimize the electricity bill while maintaining the indoor temperature within allowable error bounds. For optimization, it is assumed that the weather and electricity demand are predicted. An EnergyPlus-based house model was approximated by using an equivalent RC circuit model for application as a linear constraint to the optimization. Based on the RC model, model predictive control was applied to the management of the cooling load and electricity for the first week of August. The result shows that more than 25% of electricity consumed for cooling can be saved by allowing excursions of temperature error within an affordable range. In addition, profit can be made by reselling electricity to the main grid energy supplier during peak hours.

A Fuel Cell Generation Modeling and Interconnected Signal Analysis using PSCAD/EMTDC (연료전지 발전시스템의 PSCAD/EMTDC 모델링 및 계통연계에 따른 전력신호 분석에 관한 연구)

  • Choi, Sang-Yule;Park, Jee-Woong;Lee, Jong-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.5
    • /
    • pp.21-30
    • /
    • 2008
  • The fuel cell generation convert fuel source, and gas directly to electricity in an electro-chemical process. Unlike traditional and conventional turbine engines, the process of fuel cell generation do not burn the fuel and run pistons or shafts, and it has not revolutionary machine, so have fewer efficiency losses, low emissions and no noisy moving parts. A high power density allows fuel cells to be relatively compact source of electric power, beneficial in application with space constraints. In this system, the fuel cell itself is nearly small-sized by other components of the system such as the fuel reformer and power inverter. So, the fuel cell energy's stationary fuel cells produce reliable electrical power for commercial and industrial companies as well as utilities. In this paper, a fuel cell system has been modeled using PSCAD/EMTDC to analyze its electric signals and characteristics. Also the power quality of the fuel cell system has been evaluated and the problems which can be occurred during its operation have been studied by modeling it more detailed. Particularly, we have placed great importance on its power quality and signal characteristics when it is connected with a power grid.

Measurement of Wind and Solar Radiation for Energy Resources Survey on Islands around Namhae-Tongyoung, Korea (남해-통영 주변 도서지역에서 에너지자원 조사를 위한 풍력과 일사량의 측정)

  • Hwang, Kwang-Il
    • Journal of Navigation and Port Research
    • /
    • v.37 no.1
    • /
    • pp.79-84
    • /
    • 2013
  • For the diversity of energy supply system and the improvement in the habitants' living environments of the islands, it is possible and necessary to use the natural energy as resources of the electric power generation system. In this study, the characteristics of wind and solar radiation on 4 islands offshore Namhae-Tongyoung of Korea were measured for one year from November 2010 to October 2011 and analyzed in relation to energy resources survey. As a result of measurement and analysis, the respective wind rose diagrams of 4 islands were made, and showed that the frequencies of wind directions were quite different from among the islands. The Rayleigh probability distribution of wind velocity showed that the wind speeds of KR and SS were mainly 2~5m/s, and the respective quantities of electric power generation of 4 islands were shown to be different. The variation of solar radiations and potential quantity of those uses were measured to be similar to each other among 4 islands.

Research Trend on Performance Diagnosis and Restoration Technology of Waste Lithium Ion Battery for Energy Storage Systems (에너지저장장치용 폐리튬이온배터리 성능 진단 및 복원 기술동향)

  • Lee, Kiyoug;Choi, Jinsub;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.290-296
    • /
    • 2019
  • Lithium-ion batteries are one of the most interesting devices in a number of energy storage systems. In particular, the usage of energy storage devices is increasing due to an increase in demand for renewable energy as a distributed power supply source, stable supply of electric power, and expansion of electric vehicles. Of late, the recycling and restoration technology of waste lithium ion batteries due to the increase in its usage amount as the energy storage system is a socially and economically important research field. In this review, we intend to describe the performance diagnosis, recycling or restoration technology of lithium ion battery and its potential development.