Although various models have been developed to establish the enterprise credit scoring, no model has utilized the enterprise human resource so far. The purpose of this study was to build an enterprise credit scoring model using enterprise human resource factors. The data to measure the enterprise credit score were made by the first-year research material of HCCP was used to investigate the enterprise human resource and 2004 Credit Rating Score generated from KIS-Credit Scoring Model. The independent variables were chosen among questionnaires of HCCP based on Mclagan(1989)'s HR wheel model, and the credit score of Korean Information Service was used for the dependent variables. The statistical method used for data analysis was logistic regression. As a result of constructing a model, 22 variables were selected. To see these specifically by each large area, 6 variables in human resource development(HRD) area, 15 in human resource management(HRM) area, and 1 in the other area were chosen. As a consequence of 10 fold cross validation, misclassification rate and G-mean were 30.81 and 68.27 respectively. Decile having the highest response rate was bigger than the one having the lowest response rate by 6.08 times, and had a tendency to decrease. Therefore, the result of study showed that the proposed model was appropriate to measure enterprise credit score using enterprise human resource variables.
Kang, Hyoung-Goo;Binh, Ki Beom;Lee, Hong-Kyun;Koo, Bonha
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.15
no.6
/
pp.135-154
/
2020
This paper analyzes the 5,521 samples of the small and medium-sized businesses(SMBs) obtained from the Korea Credit Guarantee Fund. From January 2014 to September 2019, 85% of the SMBs have 5 or fewer full-time employees. The proportion of SMBs is overwhelmed by the elderly men, and most founders are the CEO. Also, about 87% of the workplace types are rented, while 64% of the CEO's residence types are owner-occupation. 47% of the financial grade score is less than 10 points out of 100 and 80% of SMBs have less than 200 million won of the loan guarantee. In particular, the total guarantee loan amount or the days of net guarantee have significantly positive relations with the working period of the CEO in the same industry, the number of employees, the operation period of SMBs, and the corporate business type. In the case of the financial grading score which has the highest weight in overall credit rating gets higher with the higher number of employees, the longer the operation period, and the corporate business type. However, the quantified non-financial grading score has no significant relationship with other explanatory variables, except for the corporate business type. This implies that a non-financial grade score is measured by other determinants that are not observed by the Korea credit guarantee fund. The pure non-financial grade score has positive relations with the working period of the CEO. Overall, this paper would help Korean SMBs upgrade their credit ratings and expand the money supply when there is no standardized credit rating model or no publicly available evaluation criteria for SMBs. We expect this paper provides important insights for further research and policy-makers for SMBs. In particular, to address the financial needs of thin-filers such as SMBs, technology-based financial services (TechFin) would use alternative data to evaluate the financial capabilities of thin-filers and to develop new financial services.
Journal of the Korea Institute of Information Security & Cryptology
/
v.29
no.6
/
pp.1285-1303
/
2019
In the current credit scoring system, the credit bureau gathers credit information from financial institutions and calculates a credit score based on it. However, because all sensitive credit information is stored in one central authority, there are possibilities of privacy violations and successful external attacks can breach large amounts of personal information. To handle this problem, we propose privacy-preserving credit scoring in which a user gathers credit information from financial institutions, calculates a credit score and proves that the score is calculated correctly using a zero-knowledge proof and a blockchain. In addition, we propose a zero-knowledge proof scheme that can efficiently prove committed inputs to check whether the inputs of a zero-knowledge proof are actually provided by financial institutions with a blockchain. This scheme provides perfect zero-knowledge unlike Agrawal et al.'s scheme, short CRSs and proofs, and fast proof and verification. We confirmed that the proposed credit scoring can be used in the real world by implementing it and experimenting with a credit score algorithm which is similar to that of the real world.
신용평점을 위한 부도예측의 분류 문제를 다루는데 있어서 통계적 판별분석 및 인공신경망 및 유전자알고리즘 등을 이용한 데이터 마이닝의 방법들이 일반적으로 고려되어왔다. 이 연구에서는 수리계획법을 응용하여 classification gap을 고려한 이단계 수리계획 접근방법을 신용평가에 적용하는 방법론을 제안하여 수리계획법을 통한 신용평가모형 구축의 가능성을 제시한다. 1단계에서는 선형계획법을 이용해서 대출 신청자에게 대출을 허가할 것 인지의 여부를 결정하게 되는 대출 심사 filtering으로의 적용단계이고, 2단계에서는 정수계획법을 이용하여 오분류 비용이 최소가 되도록 하는 판별점수를 찾는 과정으로 모형을 구성한다. 개인 대출 신청자의 데이터(German Credit Data)에 대하여 피셔의 선형 판별함수, 로지스틱 회귀모형 및 기존의 수리계획 기법들과의 비교를 통해서 제안된 모델의 성능을 평가한다. 이단계 수리계획 접근법의 평가 결과를 통하여 신용평가모형에의 적용가능성을 기존 통계적인 접근방법 및 수리계획 접근법과 비교하여 제시하고 있다.
In this paper, we examine the financial performance of credit guarantee programs. We compared financial performance of guaranteed firms of KODIT and non-guaranteed firms. The of covariate adjusted propensity score method is used because a selection bias problem could occur if t-test or regression analysis were used. The results show that a credit guarantee program enhances the financial performance of beneficiary firms.
If the watchdog role of good corporate governance, corporate executives and reduce agency costs and information asymmetries. Corporate governance score higher because enterprise internal control systems and financial reporting system is well equipped with the company management is enabled and corporate performance is higher because the high financial credit rating. Under these assumptions and hypotheses set up this study corporate governance (CGI) has been studied demonstrated how the financial impact on the credit rating (CFR). Findings,
relevant corporate governance (CGI) and financial credit rating was found to significantly affect the positive (+), Regression coefficient code is expected code of positive (+), the value
indicated by the value of all positive. The results of corporate governance (CGI) has showed excellent results, such as the more predictable will increase the credit score financial rating. The results of this study will have more CGI-credit financial rating the greater good. This study might be expected to provide a useful guide that corporate social responsibility, the company with a good governance and oversight systems enable to to get a higher credit rating in practice and research.
Journal of the Korean Data and Information Science Society
/
v.23
no.2
/
pp.235-245
/
2012
Logistic discrimination is an useful statistical technique for quantitative analysis of financial service industry. Especially it is not only easy to be implemented, but also has good classification rate. Generalized additive model is useful for credit scoring since it has the same advantages of logistic discrimination as well as accounting ability for the nonlinear effects of the explanatory variables. It may, however, need too many additive terms in the model when the number of explanatory variables is very large and there may exist dependencies among the variables. Mixtures of factor analyzers can be used for dimension reduction of high-dimensional feature. This study proposes to use the low-dimensional factor scores of mixtures of factor analyzers as the new features in the generalized additive model. Its application is demonstrated in the classification of some real credit scoring data. The comparison of correct classification rates of competing techniques shows the superiority of the generalized additive model using factor scores.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.18
no.5
/
pp.77-90
/
2023
This study aims to investigate the potential of alternative credit assessment through Social Networking Sites (SNS) as a complementary tool to conventional loan review processes. It seeks to discern the impact of SNS usage characteristics and loan product attributes on credit loan repayment. To achieve this objective, we conducted a binomial logistic regression analysis examining the influence of SNS usage patterns, loan characteristics, and personal attributes on credit loan conditions, utilizing data from Company A's credit loan program, which integrates SNS data into its actual loan review processes. Our findings reveal several noteworthy insights. Firstly, with respect to profile photos that reflect users' personalities and individual characteristics, individuals who choose to upload photos directly connected to their personal lives, such as images of themselves, their private circles (e.g., family and friends), and photos depicting social activities like hobbies, which tend to be favored by individuals with extroverted tendencies, as well as character and humor-themed photos, which are typically favored by individuals with conscientious traits, demonstrate a higher propensity for diligently repaying credit loans. Conversely, the utilization of photos like landscapes or images concealing one's identity did not exhibit a statistically significant causal relationship with loan repayment. Furthermore, a positive correlation was observed between the extent of SNS usage and the likelihood of loan repayment. However, the level of SNS interaction did not exert a significant effect on the probability of loan repayment. This observation may be attributed to the passive nature of the interaction variable, which primarily involves expressing sympathy for other users' comments rather than generating original content. The study also unveiled the statistical significance of loan duration and the number of loans, representing key characteristics of loan portfolios, in influencing credit loan repayment. This underscores the importance of considering loan duration and the quantity of loans as crucial determinants in the design of microcredit products. Among the personal characteristic variables examined, only gender emerged as a significant factor. This implies that the loan program scrutinized in this analysis does not exhibit substantial discrimination based on age and credit scores, as its customer base predominantly consists of individuals in their twenties and thirties with low credit scores, who encounter challenges in securing loans from traditional financial institutions. This research stands out from prior studies by empirically exploring the relationship between SNS usage and credit loan repayment while incorporating variables not typically addressed in existing credit rating research, such as profile pictures. It underscores the significance of harnessing subjective, unstructured information from SNS for loan screening, offering the potential to mitigate the financial disadvantages faced by borrowers with low credit scores or those ensnared in short-term liquidity constraints due to limited credit history a group often referred to as "thin filers." By utilizing such information, these individuals can potentially reduce their credit costs, whereas they are supposed to accrue a more substantial financial history through credit transactions under conventional credit assessment system.
본 연구는 2014년부터 2019년 9월 현재 신용보증기금의 자료를 이용하여 5,521 샘플의 중소상공인의 금융실태를 최초로 광범위하게 분석하였다. 중소상공인의 비중은 남성 장년층이 압도적인데 여성의 경우 청년의 비중이 높은 편이다. 기업 대부분에서 창업자와 대표자가 동일인이다. 상시 및 비상시 직원수는 5명이하가 83%에 달한다. 역시 80% 이상의 중소상공인이 2억 미만의 금액에 대하여 대출보증 서비스를 이용하고 있다. 신보의 재무등급점수는 100점 만점 중 10점 이하의 기업이 47%에 달한다. 2018년 연매출액 평균은 17억원 정도다. 같은 기간 중 부채비율의 평균은 361%다. 본 연구는 향후 중소상공인에 대한 연구와 정책개발에 중요하게 활용될 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.