• Title/Summary/Keyword: 신규 미생물

Search Result 110, Processing Time 0.028 seconds

Establishing Effective Screening Methodology for Novel Herbicide Substances from Metagenome (신규 제초활성 물질 발굴을 위한 메타게놈 스크리닝 방법 연구)

  • Lee, Boyoung;Choi, Ji Eun;Kim, Young Sook;Song, Jae Kwang;Ko, Young Kwan;Choi, Jung Sup
    • Weed & Turfgrass Science
    • /
    • v.4 no.2
    • /
    • pp.118-123
    • /
    • 2015
  • Metagenomics is a powerful tool to isolate novel biocatalyst and biomolecules directly from the environmental DNA libraries. Since the metagenomics approach bypasses cultivation of microorganisms, un-cultured microorganisms that are majority of exists can be the richest reservoir for natural products discovery. To discover novel herbicidal substances from soil metagenome, we established three easy, simple and effective high throughput screening methods such as cucumber cotyledon leaf disc assay, microalgae assay and seed germination assay. Employing the methods, we isolated two active single clones (9-G1 and 9-G12) expressing herbicidal activity which whitened leaf discs, inhibited growth of microalgae and inhibited root growth of germinated Arabidopsis seeds. Spraying butanol fraction of the isolated active clones' culture broth led to growth retardation or desiccation of Digitalia sanguinalis (L) Scop. in vivo. These results represent that the screening methods established in this study are useful to screen herbicidal substances from metagenome libraries. Further identifying molecular structure of the herbicidal active substances and analyzing gene clusters encoding synthesis systems for the active substances are in progress.

Purification and Biochemical Characterization of β-agarase Produced by Marine Microorganism Cellulophga sp. J9-3 (해양미생물 Cellulophga sp. J9-3이 생산하는 베타-아가레이즈의 분리 및 생화학적 특성)

  • Kim, Da Som;Kim, Jong-Hee;Chi, Won-Jae
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.329-336
    • /
    • 2021
  • Cellulophga sp. J9-3, is a gram-negative, aerobic marine bacterium belonging to the family Flavobacteriaceae. In addition to cellulose degradability, the J9-3 strain is also capable of hydrolyzing agar in the solid and liquid medium, and the production of agarase in the presence of agarose can be remarkably induced by the bacterium. From the cell culture broth of Cellulophga sp. J9-3, ammonium sulfate precipitation and three kinds of column chromatography were successively performed to purify a specific agarase protein, the AgaJ93. Purified AgaJ93 showed the strongest hydrolyzing activity towards agarose (approximately 22%), and even displayed activity towards starch. AgaJ93 hydrolyzed agarose into neoagarotetraose and neoagarohexaose via various oligosaccharide intermediates, indicating that AgaJ93 is an endo-type β-agarase. AgaJ93 showed maximum activity at a pH of 7.0 and temperature of 35 ℃. Its activity increased by more than six times in the presence of Co2+ ions. The N-terminal sequence of AgaJ93 showed 82% homology with the heat-resistant endo-type β-agarase Aga2 of Cellulophaga sp. W5C. However, the biochemical properties of the two enzymes were different. Therefore, AgaJ93 is expected to be a novel agarose, different from the previously reported β-agarases.

Isolation of a New Agar Degrading Bacterium, Maribacter sp. SH-1 and Characterization of its Agarase (신규 한천분해세균 Maribacter sp. SH-1의 분리 및 효소 특성조사)

  • Lee, Chang-Eun;Lee, Sol-Ji;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.156-162
    • /
    • 2016
  • In this study, we isolated a new agar-degrading marine bacterium and characterized its agarase. An agardegrading marine bacterium SH-1 was isolated from seawater, collected from the seashore of Namhae in Gyeongnam province, Korea, and cultured in marine agar 2216 media. It was identified as Maribacter. sp. SH-1 by phylogenetic analyses, based on 16S rRNA gene sequence. The extracellular agarase was extracted from culture media of Maribacter sp. SH-1 and characterized. Its relative activities were 56, 62, 94, 100, and 8% at 20, 30, 40, 50, and 60℃, respectively, whereas 15, 100, 60, and 21% relative activities were observed at pH 5, 6, 7, and 8, respectively. Its extracellular agarase exhibited maximum activity (231 units/l) at pH 6.0 and 50℃, in 20 mM Tris-HCl buffer. Therefore, this agarase would be applicable as it showed the maximum activity at the temperature at which the agar is in a sol state. Furthermore, the agarase activities remained over 90% at 20, 30, and 40℃ after 0.5 h exposure at these temperatures. Thin layer chromatography analysis suggested that Maribacter sp. SH-1 produces extracellular β-agarase, as it hydrolyzes agarose to produce neoagarooligosaccharides, such as neoagarohexaose (34.8%), neoagarotetraose (52.2%), and neoagarobiose (13.0%). Maribacter sp. SH-1 and its β-agarase would be useful for the production of neoagarooligosaccharides, which shows functional properties, like skin moisturizing, skin whitening, inhibition of bacterial growth, and delay in starch degradation.

Characterization of Noble AmpC-Type $\beta$-Lactamases Among Clinical Isolates Using New Expression/Secretion Vector (발현ㆍ분비 벡터 및 임상 균주가 생성하는 신규 AmpC-type $\beta$-lactamase의 특성)

  • 정하일;성광훈;이정훈;장선주;이상희
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.104-110
    • /
    • 2004
  • To determine evolution and genotype of new chromosomal AmpC $\beta$-lactamases among clinical isolates of Enterobacter species, we performed antibiotic susceptibility testing, pI determination, sequencing, and phy-logenetic analysis using developed expression/secretion vector. Six isolates have shown to produce AmpC $\beta$-lactamases. Six genes of AmpC $\beta$-lactamases that are responsible for the resistance to cephamycins (cefoxitin and cefotetan), amoxicillin, cephalothin, and amoxicillin-clavulanic acid were cloned and characterized in pMSG12119. Insert fragment containing the ampC genes was sequenced and found to have an open reading frame coding for 381-amino-acid $\beta$-lactamase. The nucleotide sequence of four ampC genes ($bla_EcloK992004.l$, $bla_EcloK995120.1$, $bla_EcloK99230$, and $bla_EareK9911729$) shared considerable homology with that of chromosomal ampC gene ($bla_EcloMHN1$) of E. cloacae MHN1 (more than 99.6% identity). The sequences of two ampC genes ($bla_EcloK9973$ and $bla_EcloK9914325$) showed close similarity to the chromosomal ampC gene ($bla_EcloQ908R$) of E. clo-acae 908R (99.7% identity). The results from phylogenetic analysis suggested that six ampC genes could be originated from $bla_EcloMHN1$ / or $bla_EcloQ908R$ / MIC patterns and exact pI values of six transformants indicated that the developed expression/secretion vector (pMSG1219) was suitable for the characterization of foreign genes in E. coli strain.

Effect on Digestion Efficiency by Adding Microbial Agent in Mesophilic Two-stage Anaerobic Digester (중온2단혐기성소화조에 미생물제재 주입시 소화효율에 미치는 영향)

  • Jung, Byung-Gil;Kim, Seok-Soon;Kang, Dong-Hyo;Sung, Nak-Chang;Choi, Seung-Ho;Lee, Hee-Pom
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.3
    • /
    • pp.75-86
    • /
    • 2003
  • In the near future, the capacity of conventional anaerobic digester is thought to be insufficient because of the increase of the total solids from expansion of intercepting sewer, sewage quantity and direct input of night soil from near apartment districts. The objectives of this study was to investigate the improvement of digestion efficiency using microbial agent(Bio-dh). The system was a pilot-scale, two-staged, anaerobic sludge digestion system. The first-stage digester was heated and mixed. The agitation velocity of the first-stage digester was 120rpm. The second-stage digester was neither heated nor mixed. The Digestion temperature was kept at $35{\pm}1^{\circ}C$ The detention time of digester was 19 days. The dosage of sewage sludge and microbial agent were $0.65m^3/day$ and $0.5{\ell}/day$, respectively. The experiments was run for 25days. Three times a week, $COD_{Mn}$ and SS of effluent, TS, VS, and biogas production rate were measured. Temperature, pH, and alkalinity were measured daily. The results were as follows ; Without microbial agent, digestion efficiencies ranged 46.0%~50.9%(mean=48.6%), with microbial agent(Bio-dh), digestion efficiencies ranged 52.8%~57.3%(mean=54.2%). Consequently, microbial agent(Bio-dh) increased the sludge digestion efficiency about 12%. Also, Without microbial agent, the mean concentration of $COD_{Mn}$ and SS of second-stage digester effluent were 1,639mg/L, 4,888mg/L respectively. With microbial agent, the mean concentration of $COD_{Mn}$ and SS of second-stage digester effluent were 859mg/L, 2,405mg/L respectively. Consequently, microbial agent(Bio-dh) increased the removal efficiency of $COD_{Mn}$ and SS about 47.6% and 50.8%, respectively.

  • PDF

Reduction of Highly Concentrated Perchlorate in Aqueous Medium by Newly Isolated Bacterial Strains Rhodococcus sp. YSPW01 and YSPW02 (신균주 Rhodococcus sp. YSPW01과 YSPW02를 이용한 수중 내 고농도 Perchlorate 환원 특성 연구)

  • Lee, Sang-Hoon;Hwang, Jae-Hoon;Akhil, Kabra;Lee, Dae Sung;Jeon, Byong-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.5
    • /
    • pp.352-358
    • /
    • 2014
  • The feasibility of perchlorate reducing-bacteria isolated from the sludge of an anaerobic digester was determined using ammonium perchlorate in aqueous medium. Growth kinetics of the two perchlorate reducing bacteria including Rhodococcus sp. YSPW01 and YSPW02 were investigated using acetate as the electron donor in batch experiment. The growth of YSPW01 and YSPW02 reached a steady-state at 26 and 9 h, respectively. The initial perchlorate concentration was completely reduced within 8 and 7 h by YSPW01 and YSPW02, respectively. The reduction rates were 2.1 and $15mg\;L^{-1}h^{-1}$ for YSPW01, and 3.2 and $15.5mg\;L^{-1}h^{-1}$ for YSPW02, at 1:1 and 5:1 ratios of acetate:perchlorate (w:w), respectively. In this study, the bacteria Rhodococcus sp. YSPW01 and YSPW02 demonstrated a potential for the perchlorate reduction, which could be further investigated for development of an efficient strategy to treat the perchlorate contaminated waters.

Studies on the Production of Gluconic Acid by Resting Cell System of Aspergillus niger (Aspergillus niger의 휴지균체에 의한 Gluconic Acid생성에 관한 연구)

  • 정지관;양호석;신규철;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.1
    • /
    • pp.7-19
    • /
    • 1981
  • The production of gluconic acid from glucose by the resting cell system of Aspergillus niger was studied. It was found that the conversion products from glucose by the resting cell system were markedly influenced by the pH, temperature, substrate concentration, aeration, metal ions, cultivation time and storage conditions of the resting cells. Conversion products were identified as gluconic acid by the thin layer chromatography and infrared spectrophotometry. These conversions were greatly stimulated by addition of $Mg^{++}$, and S $n^{++}$, but showed inhibitory effects by C $u^{++}$, H $g^{++}$, C $d^{++}$, A $g^{+}$ and cyanide. For the optimum cell storage, it was effective to be kept at -$25^{\circ}C$ in 0.05M phosphate buffer solution of pH 7.0. The gluconic acid production by the resting cell system was more effective than those of the fermentation with respect to cultivation time, yield, recovery and re-use of the cell.l.l.l.l.l.l.

  • PDF

The Isolation of Bacillus sphaericus 366M-9 Producing New Cephalosporin-C Deacetylase (CAH) and its Enzymatic Characterization (신규 Cephalosporin-C Deacetylase(CAH) 생산 균주인 Bacillus sphaericus 366M-9의 선발 및 그 효소학적 특성)

  • 이승훈;권태종;이동희
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.3
    • /
    • pp.224-229
    • /
    • 2004
  • Several microorganisms (esterase-producing group) were isolated by the solid selective media containing-naphtylacetate. Among them, strain 366M-9 having a high activity of cephalosporin-C deacetylase (CAH; EC 3.1.1.41) was selected. The strain 366M-9 was identified as Bacillus sphaericus on the basis of morphological, physiological, and biochemical characteristics. The production of CAH reached at maximum value after 32 hrs, when cultivated in the optimal medium containing dextrin 2.5%, peptone 2.5%, sodium chloride 0.5%, dipotassium phosphate 0.25%, ferrous sulfate 0.02%, and 7-ACA 0.1% at $30^{\circ}C$ with initial pH 6.0. The CAH was purified by 3 steps with ammonium sulfate precipitation, adsorption chromatography on hydroxyapatite column, and Sephadex G-200 gel chromatography. The final enzyme preparation was homogeneous as judged by the analysis of SDS-PAGE and HPLC. Optimum temperature and pH for CAH activity were $50{\circ}C$ and around 7.0, respectively. And the enzyme was stable at pH 6.0~8.0, up to $50^{\circ}C$. The Michaelis-Menten constants ($K_{m}$ ), $V_{max}$ were 0.87 mM and 1.22 unit/ml, respectively.

Anti-multi drug resistant pathogen activity of siderochelin A, produced by a novel Amycolatopsis sp. KCTC 29142 (Amycolatopsis sp. KCTC 29142로부터 유래된 siderochelin A의 다제 내성 균주에 대한 항균활성)

  • Lee, Dong-Ryung;Cheng, Jinhua;Lee, Sung-Kwon;Hong, Hee-Jeon;Song, Jaekyeong;Yang, Seung Hwan;Suh, Joo-Won
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.327-335
    • /
    • 2016
  • A novel Amycolatopsis strain KCTC 29142 was isolated and characterized based on the polyphasic taxonomic analysis including morphological observation, phylogenetic analysis, physiological and chemotaxonomic characteristics. The ethyl acetate extract of strain KCTC 29142 culture broth showed strong antibacterial activity and the active compound was identified as siderochelin A, a ferrous-ion chelating compound. In this study, siderochelin A showed good activity against multi-drug resistant pathogens, including Acinetobacter baumanii, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA), and Escherichia coli (E. coli). The minimum inhibitory activity against clinical isolates was also determined.

Octimization of Score Production via Sonication of Antifungal Polyene-producing Actinomycetes (초음파 파쇄에 의한 항진균 폴리엔 생성 방선균의 포자형성 최적화)

  • Kim, Byung-Kyun;Han, Kyu-Beom;Kim, Eung-Soo
    • KSBB Journal
    • /
    • v.22 no.4
    • /
    • pp.218-221
    • /
    • 2007
  • The polyene antifungal antibiotics, mostly produced by Gram-positive soil actinomycetes, are a family of type I polyketide macrolide ring compounds with 20$\sim$40 carbon backbone contain 3$\sim$8 conjugated double bonds. Using polyene-specific genomic screening strategy, we previously isolated three novel polyene-producing actinomycetes strains from soil, implying the potential application of these strains' spores as microbial pesticides. Here, we report that the sonication is a very efficient method for actinomycetes spore generation with a sonicator power-dependent manner. In addition, these sonication-driven actinomycetes spores retained significant portion of their cell viabilities as well as antifungal activities after freeze-drying procedure, implying the potential application of these strains' spores as microbial pesticides.