• Title/Summary/Keyword: 신경세포 배양

Search Result 204, Processing Time 0.027 seconds

Study on the Protective Effects of 6R-Tetrahydrobiopterin on the Oxidative Neuronal Injury in Mouse Cortical Cultures (배양된 대뇌피질세포에서 산화성 손상에 대한 6R-Tetrahydrobiopterin의 억제작용)

  • Moon, Kyung Sub;Lee, Je Hyuk;Kang, Sam Suk;Kim, Soo Han;Kim, Jae Hyoo;Jung, Shin;Kim, Tae Sun;Lee, Jung Kil
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.9
    • /
    • pp.1059-1064
    • /
    • 2001
  • Objective : 6R-Tetrahydrobiopterin(BH4) is a cofactor for the aromatic amino acid hydroxylases which is essential for the biosynthesis of catecholamines and serotonin. It also acts as a cofactor for nitric oxide synthase, and stimulates the release of some neurotransmitters such as dopamine, serotonin, acetylcholine and glutamate. Recently, it has been reported that BH4 could induce cellular proliferation and enhance neuronal survival. This study was performed to investigate the antioxidative effect of BH4 on the various oxidative insults in mouse cerebral cortical cell cultures. Methods : Iron ion(FeCl2), zinc ion(ZnCl2), sodium nitroprusside(SNP) and buthionine sulfoximine(BSO, a glutathione depletor) were used as oxidants. Cell death was assessed by measurement of lactate dehydrogenase efflux to bathing media at the end of exposure. Result : All 4 oxidants induced neuronal cell death associated with cell body swelling, which was markedly inhibited by trolox($100{\mu}M$), a vitamin E analog. BH4($10-100{\mu}M$) markedly inhibited the neuronal cell death induced by all 4 oxidants($20{\mu}M\;Cu^{2+}$, $20{\mu}M\;Zn^{2+}$, $1{\mu}M$ SNP or 1mM BSO). However, BH4 failed to inhibit the neuronal cell death induced by 24hr exposure to $20{\mu}M$ NMDA. Conculsion : These results suggest that BH4 has antioxidative action independently of any actions of enzyme cofactor.

  • PDF

The Effect of Sohaphyang-won's for Delayed Neuronal Death in Hypoxia (소합향원(蘇合香元)이 저산소증 유발 배양 대뇌신경세포에 미치는 영향)

  • Yun Kyoung-Sun;Jeong Sung-Hyun;Shin Gil-Cho;Lee Won-Chu;Moon Il-Su;Lee Ji-Hun
    • The Journal of Internal Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.104-112
    • /
    • 2003
  • Objectives : The purpose of this study is to evaluate the effects of Sohaphyang-won and is to study the mechanism for neuronal death protection in hypoxia with Embryonic day 20(E20) cortical cells of a guinea pig(Sprague Dawley). Methods : E20 cortical cells, used in this investigation were dissociated in Neurobasal media and grown for 14 days in vitro (DIV). On 14 DIV, Sohaphyang-won was added to the culture media for 72 hours. On 17 DIV, cells were given a hypoxic shock and further incubated in normoxia for another three days. On 20 DIV, Sohaphyang-won's effects for neuronal death protection were evaluated by LDH assay and the mechanism was studied by Bcl-2, Bak, Bax, caspase family. Results : This study indicates that Sohaphyang-won's effects for neuronal death protection in hypoxia is confirmed by LDH assay by the method of Embryonic day 20(E20) cortical neuroblast. Conclusions : Sohaphyang-won's mechanism for neuronal death protection in hypoxia restrains inflow of cytochrome C into cellularity caused by Bcl-2 increase and reduces the caspase cascade initiator caspase-10 and the effector caspase-3.

  • PDF

Effect of Yanggyuksanhwa-tang on Ischemic Damage in Organotypic Hippocampal Slice Culture (양격산화탕(凉膈散火湯)이 뇌해마 조직배양의 허혈손상에 따른 신경세포손상에 미치는 영향)

  • Lee, Hwan-Sung;Park, Sung-Joon;Jung, Kwang-Sik;Sohn, Young-Joo;Jung, Hyuk-Sang;Park, Dong-Il;Sohn, Nak-Won
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.231-242
    • /
    • 2008
  • Objectives : We can find out the experimental reports of Yanggyuksanhwa-tang, which has the function of regulating blood pressure related with cerebral disease, and increasing local cerebral blood stream volume, also has the recoveries for the damage of vessel endothelium, and endothelium hypertrophy caused by angiospasm after subarachnoid hemorrhage, and reduces the contraction of smooth muscle, so simultaneously improves necrosis. The aim of this study is to investigate effect of Yanggyuksanhwa-tang protecting neuronal cells from being damaged by brain ischemia through using organotypic hippocampal slice cultures. Methods : We caused ischemic damage to organotypic hippocampal slice cultures by oxygen and glucose deprivation, and Yanggyuksanhwa-tang extract was added to cultures. Thereafter we measured area percentage of propidium iodide (PI)-stained neuronal cell, lactate dehydrogenase (LDH) levels in culture media and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells. Results : Area percentage of PI-stained neuronal cells and count of TUNEL-positive cells in CA1 and DG area of organotypic hippocampal slice culture were significantly decreased in pertinent density level of Yanggyuksanhwa-tang extract. LDH levels in culture media of organotypic hippocampal slice culture were significantly decreased in pertinent density level of Yanggyuksanhwa-tang extract. Conclusions : Within pertinent density level, Yanggyuksanhwa-tang has cell protection effect that prevents brain ischemia damaging neuronal cells and apoptosis increasing.

  • PDF

Effects of Jingansikpung-tang and Gamijingansikpung-tang Water Extract on the Cultured Spinal Sensory Neurons (진간식풍탕 및 가미진간식풍탕 추출물이 배양 척수감각신경세포에 미치는 영향)

  • Seo Young Suk;Yun Sang Hak;Yeom Seung Ryong;Lee Su kyung;Shin Byung Cheul;Kwon Young Dal;Song Yung Sun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.374-379
    • /
    • 2003
  • To evaluate the mechanism of oxidative damage by Xanthine oxidase(XO) and hypoxanthine(HX)-induced oxygen radicals, XTT assay was carried out. Neurofilament EIA and PKC activity were measured to evaluate the protective effect of Jingansikpung-tang(JST) and Gamijingansikpung-tang(GJST) water extract on cultured spinal sensory neurons damaged by XO/HX, after the cultured mouse spinal sensory neurons were preincubated with various concentrations of JST and GJST water extract for 3 hours prior to exposure of XO/HX. The results were XO/HX decreased significantly, in proportion to concentration and exposed time, the survival rate of the cultured mouse sensory neurons on XTT assay. And in proportion to concentration and exposed time on cultured spinal sensory neurons, XO/HX showed the quantitative decrease of neurofilament by EIA, increase of PKC activity, but JST and GJST showed the neuroprotective effects against decrease of neurofilament and increase of PKC activity by XO/HX. From the above results, it is concluded that XO/HX have a neurotoxic effect on cultured spinal sensory neurons and the herbs water extract, such as JST and GJST prevent the toxicity of XO/HX effectively.

Effects of Water-extract Mixture of Scutellariae baicalensis GEORGI, Acarus gramineus SOLAND and Gastrodia elata BLUME on Cultured Rat Cortical Neurons and Enhancement of Learning and Memory Power (황금(黃芩), 석창포(石菖蒲), 천마(天麻) 물추출액 혼합물이 배양한 흰쥐 대뇌신경세포의 활성과 학습능력 증진 효능)

  • Bae, Chul-Hwan;Jung, Hyun-Jung;Jung, Seung-Hyun;Moon, Il-Soo;Lee, Won-Chul;Sin, Gil-Jo
    • Journal of Life Science
    • /
    • v.19 no.6
    • /
    • pp.756-764
    • /
    • 2009
  • Scutellariae baicalensis GEORGt Acorus gramineus SOLAND and Gastrodia elata BLUME are traditional medicines used in the treatment of incipient stoke. In this study we investigated their effects on various aspects of neuronal differentiation in single or composite forms. Water-extracts of these medicines showed neuroprotective effects on cultured rat cortical neurons in normoxia and hypoxia. To understand the mechanism for neuroprotection we carried out various cell biological assays. They stimulated initial differentiation of neuronal development (transition from stage 1 to 2), and increased the number of spines and the length and number of dendritic processes. These effects were best manifested in the experimental group, which were given a mixture of the three kinds of extracts (p<0.01). To assess improvement of brain functions we carried out Morris water-maze tests for the mice that were fed on these extracts instead of water for 4 weeks. The experimental groups, especially those which were given the mixture of the three kinds of extract, showed significant (p<0.01) enhancement in memory as early as one day after the learning trial. These results indicate that these three kinds of extracts have synergistic effects on neuronal protection and improvement of brain functions.

Effect of Cytokines on the Growth and Differentiation of the Glial Cells from Rat Brain in Culture (랫트 배양 신경교세포의 성장 및 분화에 대한 Cytokine의 효과)

  • Kim, Hae-Kyoung;Youn, Yong-Ha;Kang, Shin-Chung;Park, Chan-Woong;Kim, Yong-Sik
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.177-188
    • /
    • 1996
  • The effects of cytokines on the growth and differentiation of glial cells in culture were evaluated to confirm that cytokines could modify the number and function of glial cells. Proliferation of glial cells was determined by the $^3H-thymidine$ uptake and the double immunostain with anti-cell specific marker and anti-bromodeoxyuridine(BrdU) antibody. To check the effect on the differentiation of glial cells, the amount of glial fibrillar acidic protein(GFAP) and the activity of glutamine synthetase(GS) were measured in astrocytes. And also the amounts of myelin basic protein(MBP) and the activity of 2',3'-cyclic nucleotide phosphohydrolase(CNPase) were measured in oligodendrocytes. Among the cytokines used, only interleukin-$1{\beta}(IL-1{\beta})$ stimulated the growth of type 1 and type 2 astrocyte as well as 0-2A precursor cell. When the functional changes in these glial cells by cytokines were tested, $IL-1{\beta}$ did not increase GFAP content in type 1 and type 2 astrocyte, but $IL-1{\beta}$ increased GS activity in type 1 astrocyte, and slightly decreased this enzyme activity in type 2 astrocyte. Also interleukin-2(IL-2) and $interferon-{\gamma}$ $(IFN-{\gamma})$ inhibited the activity of GS in type 1 and type 2 astrocyte. On the other hand, all cytokines used did not modify the growth and differentiation in oligodendrocytes. From these results we could suggest that $IL-1{\beta}$ increases the growth of type 1 and type 2 astrocyte and also promotes the development for 0-2A precursor cell to type 2 astrocyte.

  • PDF

Moutan Cortex Extract Inhibits Amyloid ${\beta}$ Protein (25-35)-induced Neurotoxicity in Cultured Rat Cortical Neurons (Amyloid ${\beta}$ 2 Protein (25-35) 유도 배양신경세포 독성에 대한 목단피의 억제효과)

  • Kim, Joo-Youn;Ju, Hyun-Soo;Ban, Ju-Yeon;Song, Kyung-Sik;Seong, Yeon-Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.6
    • /
    • pp.409-415
    • /
    • 2008
  • Moutan cortex, the root bark of Paeonia suffruticosa Andrews (Paeoniaceae), has pharmacological effects such as anti-inflammatory, antiallergic, analgesic and antioxidant activities. We investigated a methanol extract of Moutan cortex for neuroprotective effects on neurotoxicity induced by amyloid ${\beta}$ protein ($A{\beta}$) (25-35) in cultured rat cortical neurons. Exposure of cultured cortical neurons to $10\;{\mu}M\;A{\beta}$ (25-35) for 24 h induced neuronal apoptotic death. Moutan cortex inhibited $10\;{\mu}M\;A{\beta}$ (25-35)-induced neuronal cell death at 30 and $50\;{\mu}g/m{\ell}$, which was measured by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. Moutan cortex inhibited $10\;{\mu}M\;A{\beta}$ (25-35)-induced elevation of intracellular calcium concentration ($[Ca^{2+}]_i$), and generation of reactive oxygen species (ROS) which were measured by fluorescent dyes. Moutan cortex also inhibited glutamate release into medium induced by $10\;{\mu}M\;A{\beta}$ (25-35), which was measured by HPLC. These results suggest that Moutan cortex prevents $A{\beta}$ (25-35)-induced neuronal cell damage by interfering with the increase of $[Ca^{2+}]_i$, and then inhibiting glutamate release and ROS generation. Moutan cortex may have a therapeutic role in preventing the progression of Alzheimer's disease.

Effects of Cheongsimyeonja-tang water extract on the Cultured Primary Hippocampal Cell Damaged by XO/HX (청심연자탕(淸心蓮子湯) 수추출물(水抽出物)이 XO/HX에 의해 손상(損傷)된 배양(培養) 해마신경세포(海馬神經細胞)에 미치는 영향(影響))

  • Lee, Jae-Heung;Kim, Hyong-Soon;Bae, Young-Chun;Kim, Kyung-Yo;Won, Kyoung-Sock;Hwang, Seung-Yeon
    • Journal of Sasang Constitutional Medicine
    • /
    • v.14 no.3
    • /
    • pp.132-145
    • /
    • 2002
  • The purpose of this study is to examine the toxic effects caused by xanthine oxidase/hypoxanthine(XO/HX) and the effects of herbal extracts such as Cheongsimyeonjatang(CYT) on the treatment of the toxic effects. For this purpose, experiments with the cultured hippocampal cells from new born mice were done. The results of these experiments were as follows. 1. XO/HX, a oxygen radical-generating system, decreased the survival rates of the cultured cells on MTT assay and NR assay, protein synthesis, and amounts of neurofilaments. 2. CYT have the efficacy of increasing protein synthesis decreased by XO/HX. 3. CYT have the efficacy. of increasing the amount of neurofilaments decreased by XO/HX. From the above results, it is suggested that Cheongsimyeonjatang (CYT) have marked efficacy as a protection for the damages caused by the XO/HX-mediated oxidative stress.

  • PDF

Effects of Yuldahansotang water extract on Cultured Spinal Sensory Neurons Damaged by Xanthine Oxidase/Hypoxanthine (열다한소탕(熱多寒少湯) 전탕액(煎湯液)이 XO/HX에 의해 손상(損傷)된 배양척수감각신경세포(培養脊髓感覺神經細胞) 미치는 효과(效果))

  • Hong, Jeong-a;Kim, Kyung-yo;Yu, Do-gon;Park, Hye-sun;Kim, Hyung-soon
    • Journal of Sasang Constitutional Medicine
    • /
    • v.13 no.1
    • /
    • pp.88-96
    • /
    • 2001
  • To evaluate the effect of Yuldahansotang(YHT) water extract on cultuted mouse spinal sensory neuron which was inhibited by xanthine oxidase(XO) and hypoxanthine(HX)-induced oxigen radicals, MIT assay, NR assay, Neurofilament enzymeimmuno assay and LDH activity assay were carried our after the cultured mouse spinal sensory neuron were preincubated with various concentrations of YHT water extract for 3 hours prior to exposure of XO/HX. The results obtained were as follows: 1. XO/HX, a oxigen radical, decreased the survival rate of the cultured mouse spinal sensory neuron cells on NR assay and MTT assay. 2. MTT50 value and NR50 value pf XO/HX were 20 mU/ml XO/0.2 mM HX and 40 mU/ml XO/0.2 mM HX. 3. YHT water extract have efficacy of increasing neurofilament. 4. YHT water extract have efficacy of increasing LDH activity. From above the results, It is concluded that YHT has marked efficacy as a treatment for the damages caused in the XO/HX-mediated oxidative process.

  • PDF

Ethanol Extract of Three Plants of Curcuma longae Radix, Phellinus linteus, and Scutellariae Radix Inhibits Amyloid $\beta$ Protein (25-35)-Induced Neurotoxicity in Cultured Neurons and Memory Impairment in Mice (Curcuma longae Radix, Phellinus linteus 및 Scutellariae Radix 혼합추출물의 $A{\beta}$ (25-35) 유도 배양신경세포독성 및 마우스기억손상 억제효과)

  • Kim, Joo-Youn;Jeong, Ha-Yeon;Ban, Ju-Yeon;Yoo, Jae-Kuk;Bae, Ki-Hwan;Seong, Yeon-Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.6
    • /
    • pp.388-396
    • /
    • 2009
  • The present study investigated an ethanol extract (HS0608) of a mixture of three medicinal plants of Curcuma longae radix, Phellinus linteus, and Scutellariae radix for possible neuroprotective effects on neurotoxicity induced by amyloid $\beta$ protein ($A{\beta}$) (25-35) in cultured rat cortical neurons and antidementia activity in mice. Exposure of cultured cortical neurons to $10\;{\mu}M$ $A{\beta}$ (25-35) for 36 h induced neuronal apoptotic death. At $1-50\;{\mu}g/m{\ell}$, HS0608 inhibited neuronal death, elevation of intracellular calcium concentration ($[Ca^{2+}]_i$), and generation of reactive oxygen species (ROS) induced by $A{\beta}$ (25-35) in primary cultures of rat cortical neurons. Memory loss induced by intracerebroventricular injection of ICR mice with 15 nmol $A{\beta}$ (25-35) was inhibited by chronic treatment with HS0608 (25, 50 and 100 mg/kg, p.o. for 7 days) as measured by a passive avoidance test. From these results, we suggest that the antidementia effect of HS0608 is due to its neuroprotective effect against $A{\beta}$ (25-35)-induced neurotoxicity and that HS0608 may have a therapeutic role in preventing the progression of Alzheimer's disease.