• Title/Summary/Keyword: 신경망 제어

Search Result 876, Processing Time 0.03 seconds

Automatic Generations and Representations of T-S Fuzzy Rule based on Neural Networks (신경망에 기초한 T-S 퍼지 규칙의 자동생성과 표현)

  • 황문선;오경환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.310-316
    • /
    • 1998
  • 본 논문에서는 기존의 퍼지 제어규칙에비해 좋은 성능을 갖는 T-S(Takagi-Sugeno)퍼지 모델을 자기조직화 지도와 역전파 신경망을 이용하여 표현하고 제어기 구현을 위한 규칙의 자동 생성 방법을 제안한다. 제안된 방법은 신경망에 기초하여 T-S 퍼지 제어 규칙을 포현하므로써 학습 기능을 이용하여 지식 획득을 용이하게 하고, 입력 변수간의 퍼지 관계에 기반 하여 추론이 이루어지므로 각 퍼지 변수에 대한 소속 함수의 정의 과정이 불필요하게 된다. 또한 제어기로 구현되었을 때 규칙의 수나 퍼지화 및 비퍼지화 등이 구성된 추론망을 통하여 자동으로 수행될 수 있다. 때문에 퍼지 시스템의 구현이 쉽게 이루어 질 수 있게 한다. 제안된 방법을 자동차 궤도 안정화 모의 실험에 적용해 봄으로써 추론망이 규칙을 생성하여 타당한 추론을 하게 됨을 확인한다.

  • PDF

A Neural Network Model of Electric Differential System for Electric Vehicle (전지자동차용 전자식 차동 시스템의 신경망 모델)

  • 이주상;유영재;임영철
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.6
    • /
    • pp.597-604
    • /
    • 2000
  • 본 연구에서는 전기자동차에 사용되는 전자식 차동 시스템의 신경망 모델을 제안한다. 차량이 곡선도로를 따라 주행할 경우 내측 바퀴와 외측 바퀴의 회전속도가 서로 달라야 진동이나 뒤틀림 없이 완만한 선회 주행을 할 수 있다. 전기자동차는 그 구조적 특성상 각각의 바퀴가 독립된 구동원을 갖는다. 이 때문에 일반 엔진 차량의 기어식 차동장치를 대신할 전자식 차동장치가 요구된다. 이러한 차동장치는 차량의 구조뿐만 아니라 차량의 주요 파라미터인 조향각 및 속도에 따라서 비선형적인 관계를 가지고 있어서 해석하기가 쉽지 않다. 따라서 이와 같은 비선형적인 관계 모델을 학습 능력을 가진 신경망에 의하여 모델링 함으로써 제어에 적용할 수 있다. 이를 실현하기 위해 제작한 전기자동차로 곡선도로를 주행하여 다양한 곡률과 주행속도에 따른 내측 외측 바퀴의 회전속도 데이터를 획득하고, 데이터의 비선형 특성을 고려한 차동 속도 제어기의 구조를 설계한다. 이 제어기에 적합한 모델은 신경망을 이용하여 실측 데이터를 학습시킴으로써 차동기능을 수행할 수 있는 제어기를 구현한다.

  • PDF

Adaptive Feedrate Neuro-Control for High Precision and High Speed Machining (고정밀 고속가공을 위한 신경망 이송속도 적응제어)

  • Lee, Seung-Soo;Ha, Soo-Young;Jeon, Gi-Joon
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.9
    • /
    • pp.35-42
    • /
    • 1998
  • Finding a technique to achieve high machining precision and high productivity is an important issue for CNC machining. One of the solutions to meet better performance of machining is feedrate control. In this paper we present an adaptive feedrate neuro-control method for high precision and high speed machining. The adaptive neuro-control architecture consists of a neural network identifier(NNI) and an iterative learning control algorithm with inversion of the NNI. The NNI is an identifier for the nonlinear characteristics of feedrate and contour error, which is utilized in iterative learning for adaptive feedrate control with specified contour error tolerance. The proposed neuro-control method has been successfully evaluated for machining circular, corner and involute contours by computer simulations.

  • PDF

A Neuro-contouring controller for High-precision CNC Machine Tools (고정밀 CNC 머신을 위한 신경망 윤과제어)

  • 이현철;주정홍;전기준
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.1-7
    • /
    • 1997
  • In this paper, a neuro-contouring control scheme for the high precision machining of CNC machine tools is descrihed. The proposed control system consists of a conventional controller for each axis and an additional neuro-controller. For contouring control, the contour error must be computed during realtime motion, but generally the contour error for nonlinear contours is difficult to he directly computed. We, therefore, propose a new contour error model to approximate real error more exactly, and here we also introduce a cost function for better contouring performance and derive a learning law to adjust the weights of the neuro-controller. The derived learning law guarantees good contouring performance. Usefulness of the proposed control scheme is demonstrated hy computer simulations.

  • PDF

Adaptive Neural Control of Nonlinear Pure-feedback Systems (완전궤환 비선형 계통에 대한 적응 신경망 제어기)

  • Park, Jang-Hyun;Kim, Seong-Hwan;Chang, Young-Hak
    • Journal of IKEEE
    • /
    • v.14 no.3
    • /
    • pp.182-189
    • /
    • 2010
  • A new Adaptive neural state-feedback controller for the fully nonaffine pure-feedback nonlinear system are presented in this paper. By reformulating the original pure-feedback system to a standard normal form with respect to newly defined state variables, the proposed controller requires no backstepping design procedure. Avoiding backstepping makes the controller structure and stability analysis considerably simple. The proposed controller employs only one neural network to approximate unknown ideal controllers, which highlights the simplicity of the proposed neural controller. Simulation examples demonstrate the efficiency and performance of the proposed approach.

Indirect Adaptive Control Using Wavelet Neural Networks with Genetic Algorithm (유전 알고리듬 기반 웨이블릿 신경 회로망을 이용한 혼돈 시스템의 간접 적응 제어)

  • Kim, Kyung-Ju;Choi, Jong-Tae;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2052-2054
    • /
    • 2003
  • 본 논문에서는 혼돈 비선형 시스템의 지능 제어를 위해 간접 적응 제어 기법에 기반한 웨이블릿 신경 회로망 제어기 설계 방법을 제안한다. 제어기 성능에 큰 영향을 미칠 수 있는 웨이블릿 신경 회로망 구조의 파라미터 동정은 본질적으로 강인하고 전역 최적해에 근사한 값을 결정할 수 있는 유전 알고리듬을 사용한다. 본 논문에서 제안한 제어 방법은 유전 알고리듬을 이용한 혼돈 비선형 시스템의 오프라인 동정 모델 및 기준 신호와 플랜트 출력으로 정의되는 제어 오차를 이용하여 원하는 제어 입력을 생성한다. 한편 본 논문에서 제안한 웨이블릿 신경 회로망 제어기를 대표적인 연속 시간 혼돈 비선형 시스템인 Duffing 시스템에 적용하여 설계된 제어기의 효율성 및 우수성을 검증하고자 한다.

  • PDF

A Speed Control of Switched Reluctance Motor using Fuzzy-Neural Network Controller (퍼지-신경망 제어기를 이용한 스위치드 리럭턴스 전동기의 속도제어)

  • 박지호;김연충;원충연;김창림;최경호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.109-119
    • /
    • 1999
  • Switched Reluctance Motor(SRM) have been expanding gradually their awlications in the variable speed drives due to their relatively low cost, simple and robust structure, controllability and high efficiency. In this paper neural network theory is used to detemrine fuzzy-neural network controller's membership ftmctions and fuzzy rules. In addition neural network emulator is used to emulate forward dynamics of SRM and to get error signal at fuzzy-neural controller output layer. Error signal is backpropagated through neural network emulator. The backpropagated error of emulator offers the path which reforms the fuzzy-neural network controller's mmbership ftmctions and fuzzy rules. 32bit Digital Signal Processor(TMS320C31) was used to achieve the high speed control and to realize the fuzzy-neural control algorithm. Simulation and experimental results show that in the case of load variation the proposed control rrethcd was superior to a conventional rrethod in the respect of speed response.sponse.

  • PDF

A Study on the Word Recognition of Korean Speech using Neural Network- A study on the initial consonant Recognition using composite Neural Network (신경망을 이용한 우리말 음성의 인식에 관한 연구 - 복합 신경망을 이용한 초성자음 인식에 관한 연구)

  • Kim, Suk-Dong;Lee, Haing-Sei
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.14-24
    • /
    • 1992
  • This paper is a study on the consonant recognition using neural network. First, the part of consonant was separated from the sound of vowel and consonant by the use of acoustic parameter. The rate of length vs. zero crossing rate in the sound of consonant had been studied by dividing each consonant into several groups. Finally, for the purpose of consonant recognition, the composite neural network which consists of a control network and several sub-network is proposed. The control network identifies the group to which the input consonant belongs and the sub-network recognizes the consonant in each group.

  • PDF

Neuro-controller for a XY positioning table (XY 테이블의 신경망제어)

  • Jang, Jun Oh
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.375-382
    • /
    • 2004
  • This paper presents control designs using neural networks (NN) for a XY positioning table. The proposed neuro-controller is composed of an outer PD tracking loop for stabilization of the fast flexible-mode dynamics and an NN inner loop used to compensate for the system nonlinearities. A tuning algorithm is given for the NN weights, so that the NN compensation scheme becomes adaptive, guaranteeing small tracking errors and bounded weight estimates. Formal nonlinear stability proofs are given to show that the tracking error is small. The proposed neuro-controller is implemented and tested on an IBM PC-based XY positioning table, and is applicable to many precision XY tables. The algorithm, simulation, and experimental results are described. The experimental results are shown to be superior to those of conventional control.

Modeling and Tuning of 2-DOF PID Controller of Gas turbine Generation Unit by ANFIS (적응형 신경망-퍼지 추론법에 의한 가스터빈 발전 시스템의 모델링 및 2자유도 PID 제어기 튜닝)

  • 김동화
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.1
    • /
    • pp.30-37
    • /
    • 2000
  • We studied on acquiring of transfer function and tuning of 2-DOF PID controller using ANFIS for the optimum control to turbine's variables variety. Since the shape of a membership function in the ANFIS based on the characteristics of plant. ANFIS based control method is effective for plant that its variable vary. On the other hand, a start-up time is very short and its variable's value for optimal start-up in gas turbine should be varied, but it is very difficult for such a controller to design. In this paper, we tune 2-DOF PID controller after apply a ANFIS to the operating data of Gun-san gas turbine and verify the characteristics. Its results is compared to the conventional PID controller and discuss. We expect this method will be used for another process because it is studied on the real operating data.

  • PDF