• 제목/요약/키워드: 신경망 모델링

Search Result 333, Processing Time 0.031 seconds

Euclidean Weight Distance as a Performance Measure for Backpropagation Neural Network Process Model (역전파 신경망 공정 모델의 평가지표로서의 유클리디언 웨이트 거리)

  • Kim, Byung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2663-2665
    • /
    • 2001
  • 역전파 신경망은 반도체 공정 모델링에 효과적으로 응용이 되고 있으며, 최근 선형뉴런을 비선형 함수 대신 출력층에 이용하여 모델의 예측정확도를 향상 시킨 바 있다. 본 연구에서는 그 원인을 규명하기 위한 모델의 평가지표로서의 유클리디언 웨이트 거리(Euclidean Weight Distance)를 제안한다. 이 지표를 이용하여 신경망의 입력층과 은닉층, 그리고 은닉층과 출력층의 웨이트를 감시하였으며, 그 결과 예측정확도의 향상이 이 지표의 감소에 기인하고 있음을 알았다. 모델링에 이용한 실험데이터는 다중 유도결합형 플라즈마 장비로부터 Langmuir Probe 진단 시스템을 이용하여 수집하였다.

  • PDF

Modeling of pulsed ion energy imapct on SiN surface roughness using a neural network (신경망을 이용한 펄스드 이온에너지의 SiN 표면 거칠기에의 영향 모델링)

  • Lee, Hwa-Jun;Kim, Byeong-Hwan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.237-238
    • /
    • 2009
  • 본 연구에서는 이온에너지와 박막 표면 거칠기와의 관계를 신경망을 이용하여 모델링하였다. Pulsed 플라즈마 증착장비를 이용하여 상온에서 실리콘 나이트라이드 (SiN)을 증착하였다. 바이어스 전력과 duty ratio는 각각 $40{\sim}100W$$30{\sim}90%$로 변화하였다. 이온에너지 정보는 비침투식 이온에너지 분석시스템을 이용하여 수집하였다. 신경망의 성능은 유전자알고리즘을 이용하여 최적화시켰다. 최적화한 모델은 이온에너지의 영향을 고찰하였다. 모델로부터 고 이온 에너지는 저 이온에너지가 높은 조건에서 증가시킬 때에 표면 거칠기를 보다 작게 한다는 것을 알 수 있었다.

  • PDF

Modeling of plasma etch process usuing neural network and wavelet (신경망과 웨이브렛을 이용한 플라즈마 식각공정 모델링)

  • Lee, Su-Jin;Kim, Byeong-Hwan;Yu, Im-Su;U, Bong-Ju
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.93-94
    • /
    • 2011
  • 플라즈마 감시를 위한 신경망 진단 모델을 개발한다. 이를 위해 광반사분광기, 웨이브릿, 주인자 분석, 그리고 신경망이 이용되었다. 플라즈마 식각공정데이터에 적용하여 비교 평가한 결과 모델의 예측성능이 식각특성, 분산비율, 그리고 웨이브릿의 종류에 따라 다름을 확인하였다. 개발된 모델은 웨이퍼 단위의 플라즈마 감시시스템의 개발에 응용될 수 있다.

  • PDF

Local Feature Map Using Triangle Area and Variation for Efficient Learning of 3D Mesh (3차원 메쉬의 효율적인 학습을 위한 삼각형의 면적과 변화를 이용한 로컬 특징맵)

  • Na, Hong Eun;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.573-576
    • /
    • 2022
  • 본 논문에서는 삼각형 구조로 구성된 3차원 메쉬(Mesh)에서 합성곱 신경망(Convolutional Neural Network, CNN)의 정확도를 개선시킬 수 있는 새로운 학습 표현 기법을 제시한다. 우리는 메쉬를 구성하고 있는 삼각형의 넓이와 그 로컬 특징을 기반으로 학습을 진행한다. 일반적으로 딥러닝은 인공신경망을 수많은 계층 형태로 연결한 기법을 말하며, 주요 처리 대상은 오디오 파일과 이미지이었다. 인공지능에 대한 연구가 지속되면서 3차원 딥러닝이 도입되었지만, 기존의 학습과는 달리 3차원 학습은 데이터의 확보가 쉽지 않다. 혼합현실과 메타버스 시장으로 인해 3차원 모델링 시장이 증가가 하면서 기술의 발전으로 데이터를 획득할 수 있는 방법이 생겼지만, 3차원 데이터를 직접적으로 학습 표현하는 방식으로 적용하는 것은 쉽지 않다. 그렇기 때문에 본 논문에서는 산업 현장에서 사용되는 데이터인 삼각형 메쉬 구조를 바탕으로 기존 방법보다 정확도가 높은 학습 기법을 제안한다.

  • PDF

CNN Architecture for Accurately and Efficiently Learning a 3D Triangular Mesh (3차원 삼각형 메쉬를 정확하고 효율적으로 학습하기 위한 CNN 아키텍처)

  • Hong Eun Na;Jong-Hyun Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.369-372
    • /
    • 2023
  • 본 논문에서는 삼각형 구조로 구성된 3차원 메쉬(Mesh)에서 합성곱 신경망(Convolution Neural Network, CNN)을 응용하여 정확도가 높은 새로운 학습 표현 기법을 제시한다. 우리는 메쉬를 구성하고 있는 폴리곤의 edge와 face의 로컬 특징을 기반으로 학습을 진행한다. 일반적으로 딥러닝은 인공신경망을 수많은 계층 형태로 연결한 기법을 말하며, 주요 처리 대상은 1, 2차원 데이터 형태인 오디오 파일과 이미지였다. 인공지능에 대한 연구가 지속되면서 3차원 딥러닝이 도입되었지만, 기존의 학습과는 달리 3차원 딥러닝은 데이터의 확보가 쉽지 않다. 혼합현실과 메타버스 시장의 확대로 인해 3차원 모델링 시장이 증가하고, 기술의 발전으로 데이터를 획득할 수 있는 방법이 생겼지만, 3차원 데이터를 직접적으로 학습에 이용하는 방식으로 적용하는 것은 쉽지 않다. 그렇게 때문에 본 논문에서는 산업 현장에서 이용되는 데이터인 메쉬 구조를 폴리곤의 최소 단위인 삼각형 형태로 구성하여 학습 데이터를 구성해 기존의 방법보다 정확도가 높은 학습 기법을 제안한다.

  • PDF

Artificial neural network for classifying with epilepsy MEG data (뇌전증 환자의 MEG 데이터에 대한 분류를 위한 인공신경망 적용 연구)

  • Yujin Han;Junsik Kim;Jaehee Kim
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.2
    • /
    • pp.139-155
    • /
    • 2024
  • This study performed a multi-classification task to classify mesial temporal lobe epilepsy with left hippocampal sclerosis patients (left mTLE), mesial temporal lobe epilepsy with right hippocampal sclerosis (right mTLE), and healthy controls (HC) using magnetoencephalography (MEG) data. We applied various artificial neural networks and compared the results. As a result of modeling with convolutional neural networks (CNN), recurrent neural networks (RNN), and graph neural networks (GNN), the average k-fold accuracy was excellent in the order of CNN-based model, GNN-based model, and RNN-based model. The wall time was excellent in the order of RNN-based model, GNN-based model, and CNN-based model. The graph neural network, which shows good figures in accuracy, performance, and time, and has excellent scalability of network data, is the most suitable model for brain research in the future.

Auditory Feature Extraction for Sound Classification based on Deep Neural Network (심층 신경망 기반의 사운드 분류를 위한 청각 특성 추출 기술)

  • Jang, Woo-Jin;Shin, Seong-Hyeon;Yun, Ho-Won;Cho, Hyo-Jin;Jang, Won;Park, Ho-chong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.06a
    • /
    • pp.31-32
    • /
    • 2017
  • 본 논문에서는 심층 신경망 기반의 사운드 분류를 위한 청각 특성 추출 기술을 제안한다. 심층 신경망은 인간의 신경망을 모델링 하기 때문에 인간의 인식을 기반으로 하는 특성을 사용한다면 더 적합한 학습을 할 수 있다. 기존 방법인 MFCC와 스펙트로그램과는 달리 스파이크그램은 인간의 청각 시스템을 기반으로 파형을 해석하는 방법이기 때문에 심층 신경망에 더 효율적인 특성이라고 할 수 있다. 따라서 본 논문에서는 사운드 분류 기술의 특성으로 스파이크그램을 이용하는 방법을 제안한다. 제안한 방법을 사용하면 MFCC와 스펙트로그램을 사용하는 것보다 더 높은 분류 성능을 얻을 수 있다.

  • PDF

Integrated Neural Networks Model for Handwritten Pattern Recognition using Segment Recombination (연속 필기 패턴 인식을 위한 세그먼트 재조합 기반 통합 신경망 모델)

  • 장경익;류정우;박성진;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.399-401
    • /
    • 1998
  • 단일 문자 인식과 달리 연속 필기 패턴의 인식은 근본적인 필기 패턴의 형태적 특성을 충분히 고려할 필요가 있으며 다양한 형태의 패턴에 대한 특징이나 정보를 사용하여 종합적으로 판단 할 수 있는 모델의 유연성이 요구된다. 신경망의 학습 기능은 패턴의 왜곡과 잡음 등에 크게 영향을 받지 않으면서 인식에 필요한 특징의 추출이나 패턴 부류에 해당하는 노드의 반응을 스스로 학습시킬 수 있고, 다양한 형태의 정보를 쉽게 통합할 수 있는 유연한 구조를 제공한다. 퍼지 이론(Fuzzy theory)은 일정한 규칙이나 수학적 모델로 표현하기 어려운 패턴의 애매한 특징을 모델링할 수 있기 때문에 인식 대상의 총체적 특징을 추출해 신경망에 효과적으로 적용할 수 있다. 본 논문에서는 연속 필기 숫자 패턴을 인식을 위한 신경망과 퍼지 이론을 이용한 통합 신경망 모델을 제안한다.

  • PDF

Analysis of Electron Density of Inductively Coupled Plasma Using Neural Network (신경망을 이용한 유도결합형 플라즈마의 전자밀도 해석)

  • Kim, Su-Yeon;Kwon, Hee-Ju;Kim, Byung-Whan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.462-463
    • /
    • 2007
  • 신경망을 이용하여 반구형 유도결합형 플라즈마 장비에 대한 전자밀도의 예측모델을 개발하였다. 신경망으로는 Radial Basis function Network를 이용하였고, 신경망의 예측성능은 유전자 알고리즘을 이용하여 최적화하였다. 체계적인 모델링을 위해 $2^4$ 전 인자 (Full Factorial) 실험계획법을 이용하였다. 개발된 모델을 이용하여 공정변수에 따른 전자밀도의 영향을 고찰하였다. 전자밀도는 팁 위치(즉 챔버 높이)에 가장 많은 영향을 받았으며, 소스전력과 압력의 변화에 따른 전자밀도의 변화는 작았다. 팁 위치는 소스전력 변화에 영향을 받지 않았지만, 압력변화는 팁 위치에 따라 복잡하게 전자밀도에 영향을 미쳤다.

  • PDF

Construction of Energy Model on Hot Rolling Process (열간압연공정 에너지 사용 모델 기술개발)

  • Hong, Jongheui;Lee, Jinhee;Shin, Gihoon;Kim, Seongjoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.265-267
    • /
    • 2020
  • 본 논문에서는 열간압연 공정에 있어 효율적인 제품 생산 스케줄링에 필수적인 제품단위 에너지 사용 모델링 기법을 제안한다. 제안된 모델은 시스템 자원을 효율적 혹은 최소화하여 사용하여 실시간 처리량을 최대화함으로써 생산 예정 리스트로부터의 예측 작업 수행시간을 최소화할 수 있도록 한다. 제안된 기법은 다변량 선형 모델 방식으로 구성됨으로써 인공 지능 혹은 신경망 학습 방식에 비교하여 그 처리 속도가 빠르다는 장점을 가지고 있다. 본 논문에서는 서두에서 대상 응용처인 철강 산업과 열간 압연 공정 및 에너지 스케줄링에 대하여 간략히 언급한 후 본문에서 모델링을 위한 사전 데이터 수집, 모델링 기법을 자세히 설명하고 결론에서 모델의 정확도 성능을 최신 신경망 기법과 비교하여 검증하였다.

  • PDF