• Title/Summary/Keyword: 식생면적

Search Result 548, Processing Time 0.026 seconds

Study on PM10, PM2.5 Reduction Effects and Measurement Method of Vegetation Bio-Filters System in Multi-Use Facility (다중이용시설 내 식생바이오필터 시스템의 PM10, PM2.5 저감효과 및 측정방법에 대한 연구)

  • Kim, Tae-Han;Choi, Boo-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.5
    • /
    • pp.80-88
    • /
    • 2020
  • With the issuance of one-week fine dust emergency reduction measures in March 2019, the public's anxiety about fine dust is increasingly growing. In order to assess the application of air purifying plant-based bio-filters to public facilities, this study presented a method for measuring pollutant reduction effects by creating an indoor environment for continuous discharge of particle pollutants and conducted basic studies to verify whether indoor air quality has improved through the system. In this study conducted in a lecture room in spring, the background concentration was created by using mosquito repellent incense as a pollutant one hour before monitoring. Then, according to the schedule, the fine dust reduction capacity was monitored by irrigating for two hours and venting air for one hour. PM10, PM2.5, and temperature & humidity sensors were installed two meters front of the bio-filters, and velocity probes were installed at the center of the three air vents to conduct time-series monitoring. The average face velocity of three air vents set up in the bio-filter was 0.38±0.16 m/s. Total air-conditioning air volume was calculated at 776.89±320.16㎥/h by applying an air vent area of 0.29m×0.65m after deducing damper area. With the system in operation, average temperature and average relative humidity were maintained at 21.5-22.3℃, and 63.79-73.6%, respectively, which indicates that it satisfies temperature and humidity range of various conditions of preceding studies. When the effects of raising relatively humidity rapidly by operating system's air-conditioning function are used efficiently, it would be possible to reduce indoor fine dust and maintain appropriate relative humidity seasonally. Concentration of fine dust increased the same in all cycles before operating the bio-filter system. After operating the system, in cycle 1 blast section (C-1, β=-3.83, β=-2.45), particulate matters (PM10) were lowered by up to 28.8% or 560.3㎍/㎥ and fine particulate matters (PM2.5) were reduced by up to 28.0% or 350.0㎍/㎥. Then, the concentration of find dust (PM10, PM2.5) was reduced by up to 32.6% or 647.0㎍/㎥ and 32.4% or 401.3㎍/㎥ respectively through reduction in cycle 2 blast section (C-2, β=-5.50, β=-3.30) and up to 30.8% or 732.7㎍/㎥ and 31.0% or 459.3㎍/㎥ respectively through reduction in cycle 3 blast section (C-3, β=5.48, β=-3.51). By referring to standards and regulations related to the installation of vegetation bio-filters in public facilities, this study provided plans on how to set up objective performance evaluation environment. By doing so, it was possible to create monitoring infrastructure more objective than a regular lecture room environment and secure relatively reliable data.

Assessment of the Functions of Vegetation and Soil on the Nutrient Cycling in Paddy Field Ecosystem with Inflow of Animal Wastes (빗물에 의해 축산폐수가 유입되는 논 생태계에서 영양물질 순환에 미치는 토양과 식생의 영향평가)

  • Ahn, Yoon-Soo;Kang, Kee-Kyung;Kim, Sae-Geun;Roh, Kee-An;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.162-169
    • /
    • 1998
  • This study was carried out to assess the roles of soil and vegetation on the nutrient cycling in paddy ecosystem where excessive amounts of animal wastes were flowed in due to the rain. Experimental sites included one abandoned and four cropping paddy fields which were moderately terraced under a small farm village raising 90 milk cows and 35 deer under open-air condition. The watershed covered 4 ha with every 50% of uptown and fodder crops. Concentrations of $NH_4-N$ and $P_2O_5$ in waste water flowed into the abandoned paddy field, enforced by the rain of $56.4mm\;day^{-1}$, were $8.3mg\;{\ell}^{-1}$ and $1.8mg\;{\ell}^{-1}$, respectively. Total mass of rainfall inflow to abandoned field during rice growing period (1 May to 30 Sept.) was $20,900Mg\;ha^{-1}$. Total amounts of $NH_4-N$ and $P_2O_5$ contained in that inflow were estimated as 173 kg and 38 kg, respectively. Concentrations in the outflow water through one abandoned and four rice paddy fields were reduced by 92% for $NH_4-N$ and 95% for $P_2O_5$, as compared to those in the inflows. The reserved portions of nutrients in the abandoned paddy field ecosystem, which were the summation of the uptake by weed and residues in soil, were 29% of the inflow amount for $NH_4-N$ and 30% for $P_2O_5$. These results demonstrated that soil and vegetation in paddy field ecosystem reduced the excessive nutrients from the animal waste inflow to the extents that might be suitable not only for the better growth of rice plant, located at the lower paddy fields, but also for preservation of the downstream from eutrophication.

  • PDF

Physicochemical and Biological Properties of Constructed Small-scale Ponds for Ecological Improvement in Paddy Fields (논 생태 증진을 위해 설치된 둠벙의 물리.화학적 및 생물학적 특성)

  • Kim, Jae-Ok;Shin, Hyun-Sang;Yoo, Ji-Hyun;Lee, Seung-Heon;Jang, Kyu-Sang;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.3
    • /
    • pp.253-263
    • /
    • 2011
  • This study was conducted to gain preliminary data for restoration and management of constructed small-scale ponds in paddy fields through analysis of their physicochemical and biological properties. A field survey was performed at 13 small-scale ponds located in paddy fields from August 2009 to October 2010. Structural properties, water quality, soil characteristics and fish fauna were measured. Results showed that small-scale ponds without frames might lose their function over time because of crumbling walls. Therefore, it is necessary for these ponds to have frames for soil protection and sustainable maintenance. Chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) concentration were higher than the water quality standard for agricultural water in small-scale ponds. In particular, TN concentration was 8.03 mg $L^{-1}$ and over 8 times the water quality standard because of the presence of livestock such as cows and pigs in the study areas. Sand, organic matter and available phosphorus contents of soil in small-scale ponds was 53.4${\pm}$16.6%, 21.8${\pm}$9.74 g $kg^{-1}$ and 12.8${\pm}$7.59 mg $kg^{-1}$, respectively indicating that sand and available phosphorus contents were suitable for plants in small-scale ponds, but organic matter contents was somewhat low in newly constructed small-scale ponds, and would take some time to stabilize for plant growing. Fish fauna was not diverse with only 4 species at all sites surveyed. Collected fishes share a common feature that they all inhabit paddy fields or canals with shallow water depth. In this study, all ponds were not linked to the streams and canals around them. It appears that connection to adjacent streams was the major factor controlling fish fauna in small-scale ponds. The results of statistical analysis were classified into three groups. Factor 1 was 26.3%, which shows a structural properties such as area and depth of small-scale pond. As for factor 2, it appears on 20.1%, showing water quality like a TP, suspended solids (SS) and COD. Small-scale ponds were classified into three groups by factor scores. Group I consisted of 6 small-scale ponds, which were larger than the others. Group III had higher water quality than the others. We conclude that the most important points to be considered for restoration and management of small-scale ponds is connection with adjacent streams or ditches and depth and size of the small-scale pond.

Classifications of Ecological Districts for Estuarine Ecosystem Restoration; Examples of Goseong Bay Estuaries, South sea, Korea (하구 생태 복원을 위한 생태구역 구분; 남해 고성만 고성천 인근 하구의 예)

  • An, Soon-Mo;Lee, Sang-Yong;Choi, Jae-Ung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.2
    • /
    • pp.70-80
    • /
    • 2011
  • Estuarine ecosystem responds sensitively to natural and anthropogenic perturbations. lt is necessary to identify the direction of the change when the perturbation occurs as well as to understand the structure and functioning of estuarine ecosystem for a proper management of the area. In this study, the estuarine habitats were classified into different ecological districts so as to the switch from one district to another district could be related to the environmental change due to the perturbations. Total 16 ecological districts was defined according to the presence of barrage, salinity and vegetation characteristics. The defined ecological districts were applied to small estuaries in Goseong bay, south sea of Korea (Baedun, Guman, Maam, Goseong) to distinguish different regions which might have characteristic bottom topography, inclinations of river bottom, sediment characteristics, salinity structure and area of vegetation. Total 7 out of 16 ecological district was identified in this region; NFB (natural, fresh, bare), NHB (natural, high salinity, bare), NLV (natural, low salinity, vegetated) in natural (without barrage) estuaries and CFB (closed, fresh, bare), CFV( closed, fresh vegetated), CLV (closed, low salinity, vegetated), CHB (closed, high salinity, bare) in closed (with barrage) estuary. A comparison of environmental factors and biota between CHB and CLV demonstrated the effect of barrage on estuarine ecosystem. The height and sediment characteristics of CHB and CLV were similar but the average salinity was lower in CLV than in CHB due to the barrage, which produced favorable condition for the Phragmites australis in CLV. Information regarding the ecological districts in various sizes and location could be useful for predicting the ecosystem change due to natural and anthropogenic perturbations and for preparing management actions.

Growth Characteristics and Vegetation Structure of the Pinus densiflora Forest for Sugumagi of Unmun Temple, Cheongdo-gun, Korea (청도군 운문사 입구 수구막이 소나무림 식생구조 및 생육 특성)

  • Kang, Gi Won;Lee, Do-I;Han, Bong-Ho;Kwak, Jeong-In
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.5
    • /
    • pp.1-15
    • /
    • 2020
  • This study was designed to come up with a way of managing a cultural landscape forest by conducting research on the vegetation structure and growth characteristics. This study's target site, which was 45,201㎡ in size, was Pinus densiflora forest for Sugumagi placed at the entrance of Unmun Temple, Sinwon-ri, Unmun-myeon, and Cheongdo-gun in the southernmost part of Gyeongsangbuk-do, Korea. Sugumagi means the water of the valley flows far away, and where no downstream is visible according to feng shui. The historical sources of the Sugumagi Pinus densiflora forest at the entrance of Unmun Temple isn't clear. It waw only found at that location. The Pinus densiflora forest at the entrance of Unmun Temple is located in the waterway in terms of Feng Shui. The present condition of growth was investigated through a grid surveys of 98 trees and Pinus densiflora growth. As a result of the analysis of growth status, Pinus densiflora, Larix leptolepis, Zelkova serrata, Celtis sinensis, and Rhus javanica were distributed in the conopy layer, and 28 species including Ailanthus altissima were grown in the understroy layer, and 92 species, including Ampelopsis brevipedunculata, in the shrub layer. The plant community structure was divided into low, medium and high-density Pinus densiflora forests in the study area, based on the number in the conopy layer and the grade of and the trees analyzed. As a result of the analysis, the Pinus densiflora dominated the low, medium and high-density Pinus densiflora forests, and there were no competitive species. The relative dominance of the low-density Pinus densiflora forests was 46.9% on average, medium-density was 62.6% and 50.2% was found in high-density. The mean species diversity of Shannon in the low-density study was 0.7055, medium-density study was 0.8966 and the average species diversity of Shannon in the high-density study was 0.8317. The analysis of the age and growth of 25 sample trees in the Sugumagi Pinus densiflora forest shows that the distribution of the chest diameter (DBH) of the sample Pinus densiflora is 38 to 77cm with the average chest diameter being 61.1cm. The age was 84-161 years and the average was 114 years. In the Pinus densiflora forest, most(670,659, or 98.3%) of the tree trunk wound was collected for rosins during the Japanese colonia Era, Of the total 670, 659 were Pinus densiflora, 98.3% of the total. 394 were surgically repaired in 2005. For the preservation of the Sugumagi Pinus densiflora forest, dead trees should be replaced with substitute trees appropriate to the middle and south topography. It is demanded that foreign species such as Larix leptolepis in the research area should be removed and Pinus densiflora that underwent surgical operations should be regularly sterilized. It is also emphasized that the management of insecticide is important.

A Function and Weight Selection of Ecosystem Service Function for the Eco-friendly Protected Horticulture Complex in Agricultural Landscape (시설원예단지의 친환경적 조성을 위한 생태계서비스 기능 및 가중치 산정)

  • SON, Jinkwan;KONG, Minjae;SHIN, Yukung;YUN, Sungwook;KANG, Donghyeon;Park, Minjung;LEE, Siyoung
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.533-541
    • /
    • 2017
  • Agricultural landscape has many ecosystem service functions. However, the development of the horticulture complex has no consideration for environmental conservation. Therefore, we analyzed the priorities of ecosystem service functions required for the composition. The study was conducted in three stages. As a result of the first survey, 17 functions were selected to be improved. In the second survey, 12 functions were selected excluding 5 functions. Finally, 1. Measures for water purification, 2. Groundwater recharge plan, 3. Surface water storage space, 4. Flood control measures, 5. Vegetation diversity space, 6. Carbon emission reduction plan, 7. Aquatic insect habitat space, 8. Amphibian reptiles 9. Landscape and Waste Management, 10. Bird Species Space, 11. Heat Island Mitigation Plan, 12. Experience / Ecological Education Plan. We proposed the structure, capacity, flow rate, arrangement and form of the water treatment facility to improve water quality by improving the function. We proposed a reservoir space of 7-10% for groundwater recharge. The development of reservoir and storage facilities suitable for the Korean situation is suggested for the surface water storage and flood control measures. And proposed to secure a green space for the climate cycle. Proposed habitat and nutrient discharge management for biodiversity. We propose green area development and wetland development to improve the landscape, and put into the facilities for experiential education. The results of the research can be utilized for the development and improvement of the horticultural complex.

Effectiveness of Controling Micro Climate by the Pine (Pinus Densiflora) Forests of the Temple in Southeast Area of Korea (영남권 사찰림일대 소나무장령림의 미기후 조절 효과 연구)

  • Hong, Suk-Hwan;An, Mi-Yeon;Kang, Rae-Yeol;Choi, Song-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.4
    • /
    • pp.294-303
    • /
    • 2020
  • This study aimed to examine was conducted to the ability of microclimate control in old pine forests by surveying pine forest in Buddhist temples, where the pine forest are stably growing through active protection in the Gyeongnam region, and comparing variation characteristics of microclimate characteristics (temperature and humidity) and distribution of vegetation type. The study sites were pine forests protected well by Buddhist temples (Haein-sa, Beomeo-sa, Tongdo-sa, and Bulguk-sa) in the southeast region of Korea and thus known for stably growing young pine trees. According to the vegetation distribution status analysis, these pine forests did not have a high ratio of pine trees. Except for Tongdo-sa, the ratio of deciduous forest and mixed (deciduous and pine trees) forest had a much larger presence than that of pine forest. Measured data of microclimate showed that the Tongdo-sa area had significantly different characteristics compared to the other three areas. Tongdo-sa area showed a significantly higher diurnal range of temperatures and humidity than the other three areas, in both spring and summer. It is due to the difference in vegetation management. The forests around Tongdo-sa are mostly pine forests, except for the developed areas, while those in the other three areas have a dominant ratio of deciduous brad-leaved forests. Intensive control of pine forest is not effective in mitigating microclimate, i.e., temperature and air humidity. Stress caused by rising temperatures and decreasing air humidity is blamed for the decline of pine forests. Thus, the current active management of pine forests, such as the Tongdo-sa case, has been found to have a greater negative impact on the temperature and humidity stress. Therefore, we believe that a new change in forest management is necessary to increase the effect of mitigating the microclimate of pine forests.

Study of the UAV for Application Plans and Landscape Analysis (UAV를 이용한 경관분석 및 활용방안에 관한 기초연구)

  • Kim, Seung-Min
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.32 no.3
    • /
    • pp.213-220
    • /
    • 2014
  • This is the study to conduct the topographical analysis using the orthophotographic data from the waypoint flight using the UAV and constructed the system required for the automatic waypoint flight using the multicopter.. The results of the waypoint photographing are as follows. First, result of the waypoint flight over the area of 9.3ha, take time photogrammetry took 40 minutes in total. The multicopter have maintained the certain flight altitude and a constant speed that the accurate photographing was conducted over the waypoint determined by the ground station. Then, the effect of the photogrammetry was checked. Second, attached a digital camera to the multicopter which is lightweight and low in cost compared to the general photogrammetric unmanned airplane and then used it to check its mobility and economy. In addition, the matching of the photo data, and production of DEM and DXF files made it possible to analyze the topography. Third, produced the high resolution orthophoto(2cm) for the inside of the river and found out that the analysis is possible for the changes in vegetation and topography around the river. Fourth, It would be used for the more in-depth research on landscape analysis such as terrain analysis and visibility analysis. This method may be widely used to analyze the various terrains in cities and rivers. It can also be used for the landscape control such as cultural remains and tourist sites as well as the control of the cultural and historical resources such as the visibility analysis for the construction of DSM.

Habitats Environmental and Population Characteristics of Cypripedium japonicum Thunb., a Rare Species in Korea (희귀식물 광릉요강꽃 자생지 환경 및 개체군 특성)

  • Pi, Jung-Hun;Jung, Ji-Young;Park, Jeong-Geun;Yang, Hyung-Ho;Kim, Eun-Hye;Suh, Gang-Uk;Lee, Cheul-Ho;Son, Sung-Won
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.4
    • /
    • pp.253-262
    • /
    • 2015
  • The sustainability of Cypripedium japonicum, a rare plant designated by the Korea Forest Service, is threatened due to artificial factors such as habitat loss and climate change etc. and internal factors such as changes in biological properties of the habitat etc. but conservation research has not been performed in South Korea. The objective of this study is to establish the species conservation strategies by analyzing the characteristics of their habitats, including: 1) Population characteristics, and 2) habitat analysis of the vegetation and abiotic environments. From April to September, 2014, population characteristics [density (stems $m^{-2}$), flowering rate (%), and leaf area ($cm^2$)] in Cypripedium japonicum habitats such as Chuncheon (CC), Hwacheon (HC), Muju (MJ), and Gwangyang (GY) and vegetation characteristics (plant sociological research and ordination analysis), and abiotic environments [temperature ($^{\circ}C$), relative humidity (%), transmitted light ($mol{\cdot}m^{-2}{\cdot}d^{-1}$) and canopy openness (%)] were measured. Cypripedium japonicum was mainly distributed at elevation 450 to 990 m and 5 to $30^{\circ}$ slope. Slope direction was shown as 0 to $110^{\circ}$. Habitats temperature (mean $18.94^{\circ}C$) was well matched to seasonal changes. Differences among sites showed greater level according to latitude difference. It showed the highest in habitat, GY located in the South. On the other hand, relative humidity (77.38%) didn't show much difference among sites. The average degree of canopy openness was 18.17%. It showed the highest at HC (22.1%) and the lowest at MJ (16.1%). The average degree of transmitted light was $9.1mol{\cdot}m^{-2}{\cdot}d^{-1}$. It showed the highest at CC ($10.6mol{\cdot}m^{-2}{\cdot}d^{-1}$) and the lowest at GY ($6.87mol{\cdot}m^{-2}{\cdot}d^{-1}$). Chlorophyll content showed average 26.12 SPAD. It showed the highest at MJ (30.64 SPAD value) and the lowest at HC (23.69 SPAD value). Leaf area was average $253.35cm^2$. It showed the highest at CC ($281.51cm^2$) and the lowest at HC ($238.23cm^2$).

Carbon Budget Evaluated in Two Urban Parks of Seoul (서울의 두 도시 근린공원에서 평가된 탄소수지)

  • Kim, Gyung Soon;Pi, Jung Hun;An, Ji Hong;Lim, Chi Hong;Jung, Song Hie;Joo, Seung Jin;Lee, Chang Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.1
    • /
    • pp.51-61
    • /
    • 2016
  • This study was carried out to assess the carbon budget of two urban parks and one natural park and to prepare the plan for improving the ecological functions of the park including carbon sink. Net Ecosystem Production (NEP) of those study sites was calculated from the relationship between Net Primary Production (NPP) and soil respiration of each study site. To understand carbon budget of the whole area designated as the park, carbon budget of the urban park was analyzed by classifying the vegetated and the non-vegetated zones. NEP of the Nohae and the Sanggye parks calculated by reflecting areal size that the non-vegetated zones occupy were shown in -1.0 and $0.6\;ton\;C\;ha^{-1}yr^{-1}$, respectively. On the other hand, NEP of Mt. Bulam natural park as a reference site was in $2.3\;ton\;C\;ha^{-1}yr^{-1}$. Based on the result, the Nohae park was assessed as carbon source rather than carbon sink. On the other hand, the Sanggye park was classified as carbon sink but the role was poor compared with natural park. The result is, first of all, due to lower NPP of the vegetation introduced for the parks compared with natural vegetation. The other reason is due to wide arrangement of non-vegetated zone. To solve those problems and thereby to create the urban park with high ecological quality, selection of plant species suitable for the ecological characteristic of the park, their arrangement imitated natural vegetation, and ecological zoning were recommended.