본 연구에서는 고농도 미세먼지의 발생과 연관된 대기패턴을 조사하고, 이를 바탕으로 한반도의 고농도 미세먼지의 발생을 예측할 수 있는 지수를 개발하였다. 또한 개발된 지수를 이용하여 미래의 한반도 고농도 미세먼지 발생과 연관된 대기 패턴의 변화를 살펴보았다. 서울지역 미세먼지 농도의 변동성을 조사하기 위해, 황사 발생 사례일을 제외한 미세먼지 고농도 사례일은 대기환경기준에 따라 24시간 평균 $PM_{10}$ 농도가 $100{\mu}g/m^3$ 이상일 경우로 정의하였다. 미세먼지 연평균 농도는 2001년부터 꾸준히 감소하는 경향을 보이며, 2012년 이후에 감소 추세가 주춤하였으며, $PM_{10}$ 고농도 사례일수도 2003년부터 2016년까지 대체로 감소하였다. 그러나 4일 이상 지속되었던 고농도 사례만을 살펴보면 2001년과 2003년을 제외하고 뚜렷한 감소 경향을 찾아보기 어렵고 전반적인 대기질 향상에도 불구하고 지속적으로 발생하는 것을 알 수 있다. 4일이상 지속되는 고농도 사례는 최근 들어 뚜렷한 경향을 보이지 않고, 기상조건 등의 다른 발생원이 있음을 알 수 있다. 그러므로 고농도 사례에 대한 대기 순환장의 특징을 살펴보기 위해 한반도의 고농도 사례일에 대한 대기패턴의 합성장을 분석하였다. 고농도 사례가 발생하였을 경우, 한반도 상공에 고기압에 위치하면서, 극의 찬 공기의 유입을 차단하며, 상층 동서 방향 바람은 한반도 북쪽으로 흐르게 된다. 따라서 한반도 지역은 차고 건조한 북서풍이 약화되고, 풍속이 감소된다. 이러한 한반도 미세먼지 고농도 사례와 연관된 대기패턴을 바탕으로 겨울철 한반도 $PM_{10}$ 농도를 전망하기 위한 미세먼지 고농도 지수를 정의하여 사용하였다. 먼저 500 hPa 지위고도, 500 hPa 동서 방향 바람 성분, 850 hPa 남북 방향 바람 성분과 $PM_{10}$과의 상관성이 높은 지역에서 각 변수를 영역 평균하고 표준화 과정을 거친 후 각 변수에 대한 지수를 계산하고, 각 지수의 합으로 한반도 미세먼지 고농도 지수 (KPI)를 정의하였다. 한반도 미세먼지 고농도 지수를 CMIP5에 참여하는 10개의 기후모형에 적용하여 미래 한반도의 고농도 미세먼지를 발생시킬 수 있는 대기패턴의 변동성을 살펴보았다. 겨울철 한반도에서 대기의 정체를 유발하여 심한 대기오염을 발생시킬 수 있는 기상 조건의 빈도가 기후변화에 따라 크게 증가하는 것으로 나타났다. 이러한 증가는 한반도 주변의 평균 대기 상태의 변화와 일치한다 (Cai et al, 2017). 이 연구는 $PM_{10}$ 관측자료 기간이 2001년부터 2016년까지의 총 16년 동안의 자료 만을 이용하여 한반도 고농도 미세먼지 발생과 관련된 대기패턴을 분석하였기에 대기오염과 연관된 기상조건을 완벽하게 식별하지는 못하였을 것이다. 향후 연구를 통해서 $PM_{10}$과 더불어 $PM_{2.5}$의 자료를 활용하여 상세한 분석이 필요할 것으로 보인다. 그럼에도 불구하고, 본 연구의 결과는 지구 온실가스 배출로 인한 대기 순환의 변화가 한반도 고농도 미세먼지 발생 사례를 증가시키는 중요한 역할을 할 수 있음을 시사한다. 지구 온난화가 심해진다면, 작은 대기 오염 배출이라도 축적이 되어 고농도 미세먼지 현상이 발생 할 수 있다. 따라서 대기 오염 배출 저감 노력뿐만 아니라, 온실가스 배출량을 줄이기 위한 노력이 동시에 필요할 것으로 사료된다.
본 연구에서는 dVB 특이적인 202개 InDel 마커를 이용하여 강원도에서 육성된 콩 품종의 바코드 데이터베이스 구축 및 유전분석을 수행하였다. 강원도에서 육성된 품종의 202개 InDel의 다형성을 기존의 147 품종과 비교한 결과 강원도 품종이 명확하게 구분되었다. 이는 식량원에서 개발된 콩 품종 인식 시스템이 강원도 품종의 보급종 체계에서 품종의 균일성과 안정성 평가에 적용 가능함을 나타낸다. 153개 품종의 유전형을 이용하여 집단구조를 분석한 결과, '흑청', '호반', '청아'는 subgroup 1으로, '기찬', '대왕', '햇살', '강일'은 admixture로 구분되었다. 강원도 재래종의 숙기를 앞당기 위하여 subgroup 3의 유전 영역이 도입되었으며, 강원도의 특이 환경 및 기후변화 대응에는 subgroup 4가 주로 이용되었음이 유전분석집단에서 확인되었다. 특히, 다양한 소비자의 욕구를 충족과 함께 지역 환경에 적응성을 높이기 위해서 신품종 육성에 유전구조가 다른 다양한 재래종(혹은 품종)의 유전 영역이 지속적으로 도입되어 admixture 집단이 증가한 것으로 판단된다. 결론적으로 강원도 품종의 바코드 데이터베이스 구축은 품종 식별 정확성과 효율성을 향상시켜 품종의 권리 보호와 함께 종자산업 경쟁력을 보다 높일 수 있을 것으로 기대된다. 향후 dVB에 연관된 양적/질적 형질에 대한 추가 연구와 함께 202개 InDel 마커를 이용하여 실험실 수준에서 교배모부본의 잠재적 가능성을 평가할 수 있기 때문에 품종 육성의 효율을 더욱 높일 수 있을 것이다.
본 연구는 수수의 수확량 추정을 위해 무인기로 취득한 RGB 영상과 YOLOv5를 이용하여 수수 이삭 탐지 모델을 개발하였다. 이삭이 가장 잘 식별되는 9월 2일의 영상 중 512×512로 분할된 2000장을 이용하여 모델의 학습, 검증 및 테스트하였다. YOLOv5의 모델 중 가장 파라미터가 적은 YOLOv5s에서 mAP@50=0.845로 수수 이삭을 탐지할 수 있었다. 파라미터가 증가한 YOLOv5m에서는 mAP@50=0.844로 수수 이삭을 탐지할 수 있었다. 두 모델의 성능이 유사하나 YOLOv5s (4시간 35분)가 YOLOv5m (5시간 15분)보다 훈련시간이 더 빨라 YOLOv5s가 수수 이삭 탐지에 효율적이라고 판단된다. 개발된 모델을 이용하여 수수의 수확량 예측을 위한 단위면적당 이삭 수를 추정하는 알고리즘의 기초자료로 유용하게 활용될 것으로 판단된다. 추가적으로 아직 개발의 초기 단계를 감안하면 확보된 데이터를 이용하여 성능 개선 및 다른 CNN 모델과 비교 검토할 필요가 있다고 사료된다.
이 논문은 Z세대의 관점에서 현재 해군 인력 활용 체제의 한계점에 관해 탐구하고 개선방안을 고찰하는 논문이다. 밀레니얼 세대에 이어 Z세대가 등장하고 있고, 군 인력구성에서의 비율 또한 점진적으로 증가하고 있다. 해군의 임무 특성상 X세대와 다른 특성을 가진 밀레니얼 세대와 또 다른 특성이 있는 Z세대와의 융합은 필연적으로 고찰해야 하는 과제 중 하나이다. 좁은 함정(艦艇)이라는 공간에는 폭넓은 임무 수행을 위해 수많은 장비를 탑재하고 이를 24시간 동안 동등한 수준의 전투력으로 운영할 많은 수의 승조원이 함께 생활하게 되는데, 이러한 특수한 작전환경에서 승조원 간 세대 갈등은 크나큰 전투력 악화로 이어질 수 있다. 신세대 장병은 이전 세대와 다른 측면에서의 사회적 어려움을 겪고 있고 군에 대한 가치관이 서로 다르기에, 그들 간의 진정한 화합을 위해서는 각 세대의 가치관의 차이점에 대해 자세히 탐구하고 군 조직은 이러한 변화에 대해 적절한 대처를 하고 있는지 검토해 보아야 한다. 이에 따라, 1장과 2장에서 기성세대와 구분되는 밀레니얼 세대와 Z세대의 성장기에 겪었던 환경과 이를 바탕으로 형성된 가치관에 대해 알아보고 세대 간 갈등의 해결 필요성을 제기한다. 3장에서는 군사 강국이 MZ세대와의 공존을 위해 시행 중인 방안 분석을 통해 교훈을 도출한다. 4장에서는 해군만의 특수한 작전 환경에 대해 살펴보고, 현재 한국 해군의 인력 활용의 현주소를 수병, 부사관, 장교, 정책적 차원으로 살펴보면서 세대 간 융합의 장애 요소를 식별하고 이에 대응한 개략적인 해결방안을 제시한다. 5장에서는 세대 간 특성 인식을 통한 진정한 공감의 필요성과 기술 중심군인 해군에게 인력 활용 문제 해결의 중요성을 재고하며 향후 인력 활용 문제 및 세대 간 갈등 문제를 해결한 해군 조직의 기대상에 대해 서술하였다.
광양항 해양산업클러스터는 현재 실질적으로 운영되는 국내 유일의 해양산업클러스터이나, 개장 이후 다양한 활성화 정책을 추진함에도 불구하고 현재까지 입주율은 낮은 실정이다. 이에 따라 입주기업 활성화를 저해하는 현행 제도의 제약요인을 식별하고 활성화 방안을 마련하는 것이 본 연구의 목적이다. 이를 위해 우선적으로 광양항 해양산업클러스터의 핵심산업인 해운항만물류분야 연구개발(R&D)사업 현황을 분석하고, 광양항 해양산업클러스터 입주가 예상되는 기업을 대상으로 설문조사를 수행하였다. 그 결과 항만·해운분야 R&D 비중이 타 분야 대비 낮고, 국내 연구개발 사업은 민간 중소기업을 중심으로 추진되고 있다. 또한 실증을 위한 항만시설 필요성이 높지 않으며, 광양항에 대한 기업 접근성 부족이 제약요인으로 도출되었다. 이를 바탕으로 본 연구에서는 입주기업 확대를 위한 개선방안을 다음과 같이 4가지로 제시하였다. 첫째, 현재 광양항 해양산업클러스터에 입주가능한 핵심산업을 해운·항만·물류분야에서 해양수산업 전체로 확대하여 해당 산업에서 R&D를 수행하는 기업이 입주할 수 있도록 개선이 필요하다. 두 번째, 현재 기업 입주 자격으로 제시되고 있는 업종코드 변경을 통해 실제 연구개발사업을 수행하는 기업이 등록된 업종을 반영함과 동시에 해양수산업 전체로 확대되는 핵심산업군을 모두 포함할 수 있어야 한다. 따라서 본 연구에서 향후 광양항 해양산업클러스터 입주기업 모집 시 활용할 수 있는 확대된 기업코드를 제시하였다. 세 번째, 현제 광양항 해양산업클러스터는 연 1~2회 입주기업을 모집하는 방식을 취하고 있으나, R&D 수행기업이 실증을 위한 항만 활용 수요가 발생한 시점에 맞추어 유연하게 입주할 수 있도록 해야 하며, 이를 위해 상시모집 체계로 전환을 제시하였다. 마지막으로 입지적으로 낮은 접근성을 극복하기 위해서는 보편적인 재정적 지원보다는 민간기업 또는 중소기업이 실질적으로 필요로 하는 연구개발에 특화된 기술개발 지원사업이 필요하며, 이를 입주 유인책으로 활용해야 한다.
골다공증은 전 세계적으로 주요한 건강 문제임에도 불구하고, 골절 발생 전까지 쉽게 발견되지 않는 단점을 가지고 있습니다. 본 연구에서는 골다공증 조기 발견 능력 향상을 위해, 복부 컴퓨터 단층 촬영(Computed Tomography, CT) 영상을 활용하여 정상-골감소증-골다공증으로 구분되는 골다공증 단계를 체계적으로 분류할 수 있는 딥러닝(Deep learning, DL) 시스템을 개발하였습니다. 총 3,012개의 조영제 향상 복부 CT 영상과 개별 환자의 이중 에너지 X선 흡수 계측법(Dual-Energy X-ray Absorptiometry, DXA)으로 얻은 T-점수를 활용하여 딥러닝 모델 개발을 수행하였습니다. 모든 딥러닝 모델은 비정형 이미지 데이터, 정형 인구 통계 정보 및 비정형 영상 데이터와 정형 데이터를 동시에 활용하는 다중 모달 방법에 각각 모델 구현을 실현하였으며, 모든 환자들은 T-점수를 통해 정상, 골감소증 및 골다공증 그룹으로 분류되었습니다. 가장 높은 정확도를 갖는 모델 우수성은 비정형-정형 결합 데이터 모델이 가장 우수하였으며, 수신자 조작 특성 곡선 아래 면적이 0.94와 정확도가 0.80를 제시하였습니다. 구현된 딥러닝 모델은 그라디언트 가중치 클래스 활성화 매핑(Gradient-weighted Class Activation Mapping, Grad-CAM)을 통해 해석되어 이미지 내에서 임상적으로 관련된 특징을 강조했고, 대퇴 경부가 골다공증을 통해 골절 발생이 높은 위험 부위임을 밝혔습니다. 이 연구는 DL이 임상 데이터에서 골다공증 단계를 정확하게 식별할 수 있음을 보여주며, 조기에 골다공증을 탐지하고 적절한 치료로 골절 위험을 줄일 수 있는 복부 컴퓨터 단층 촬영 영상의 잠재력을 제시할 수 있습니다.
본 논문에서는 딥러닝을 활용하여 복합재 적층판의 파괴 모드를 결정하는 방법을 제안하였다. 수많은 엔지니어링 응용 분야에서 적층 복합재의 사용이 증가함에 따라 무결성과 성능을 보장하는 것이 중요해졌다. 그러나 재료의 이방성으로 인해 복잡하게 나타나는 파괴모드를 식별하는 것은 도메인 지식이 필요하고, 시간이 많이 드는 작업이다. 따라서 이러한 문제를 해결하기 위해 본 연구에서는 인공 지능(AI) 기술을 활용하여 적층 복합재의 파괴 모드 분석을 자동화하는 것을 목표로 하였다. 이 목표를 달성하기 위해 적층된 복합재에서 파손된 인장 시험편의 주사 전자 현미경(SEM) 이미지를 얻어 다양한 파괴 모드를 확보하였다. 이러한 SEM 이미지는 섬유 파손, 섬유 풀아웃, 혼합 모드 파괴, 매트릭스 취성 파손 및 매트릭스 연성 파손과 같은 다양한 파손 모드를 기준으로 분류하였다. 다음으로 모든 클래스의 집합 데이터를 학습, 테스트, 검증 데이터 세트로 구분하였다. 두 가지 딥 러닝 기반 사전 훈련 모델인 DenseNet과 GoogleNet을 이용해 각 파괴 모드에 대한 차별적 특징을 학습하도록 훈련하였다. DenseNet 및 GoogleNet 모델은 각각 (94.01% 및 75.49%) 및 (84.55% 및 54.48%)의 훈련 및 테스트 정확도를 보여주었다. 그런 다음 훈련된 딥 러닝 모델은 검증 데이터 세트를 활용해 검증하였다. 더 깊은 아키텍처로 인해 DenseNet 모델이 고품질 특징을 추출하여 84.44% 검증 정확도(GoogleNet 모델보다 36.84% 더 높음)를 얻을 수 있음을 확인하였다. 이는 DenseNet 모델이 높은 정밀도로 파괴 모드를 예측함으로써 적층 복합재의 파손 분석을 수행하는 데 효과적이라는 것을 알 수 있다.
체장어군탐지기(fish sizing echo sounder) 의송.수파기로서 사용하기 위한 split beam 음향 변환기를 개발하기 위한 시도로서, Dolph Chebyshev배열 기법을 이용하여 36개의 압전 진동소자에 진폭 가중치를 부여한 평면배열 음향 변환기를 설계.제작하고, 이 변환기의 수중음향방사 특성에 대해 분석.고찰한 결과를 요약하면 다음과 같다. 1. split beam 음향 변환기의 4 개의 독립적인 진동자 블록에 대한 수중에서의 평균적인 공진 및 반공진 주파수는 각각 69.8 kHz. 83.0 kHz이었고, 이들 공진과 반공진 주파수에서의 임피던스는 49.2$\omaga$. 704.7$\omaga$이었다. 음향변환기의 4 개의 모든 진동자 블록 (sum beam)에 대한 수중에서의 공진 및 반공진 주파수는 각각 71.4 kHz, 82.1kHz이었고. 이들 공진과 반공진 주파수에서의 임피던스는 15.2$\omaga$, 17.3$\omaga$이었다. 2 split beam 음향 변환기의 4 개의 독립적인 진동자 블록에 대한 최대 송파전압감도(TVR)는 공통적으로 70.0 kHz에서 165.5 dB이었고, -3 dB 점에 대한 송신 주파수 대역폭은 10.0 kHz이었다. 또한. split beam 음향 변환기의 4 개의 조합된 진동자 블록에 대한 최대 수파감도(SRT)는 공통적으로 75.0 kHz에서 -177.5 dB이었고, -3 dB 점에 대한 수신 주파수 대역폭은 10.0 kHz이었다. 3.split beam 음향 변환기의 모든 진동자 블록에 대한 송신 지향성패턴은 원형이었고, -3 dB점에 대한 수평 및 수직방향에 대한 반감각(half beam angle)은 공통적으로 $9.0^\circ$이었다. 또한. 수평방향에 대한 제 1차 부엽 준위는 $22^\circ$및 $-26^\circ$에서 각각 -19.7 dB. -19.4 dB이었고. 수직방향에 대한 제1차 부엽 준위는 $22^\circ$및 $-26^\circ$에서 각각 -20.1 dB, -22.0 dB로서 설계 목표치 -20 dB과 매우 유사한 값을 나타내었다. 4.split beam 음향 변환기의 송파응답파형과 수파응답파형은 각각 송신 및 수신 공진주파수 부근인 70.0 kHz와 75.0 kHz에서 전기 입력펄스파형과 가장 유사한 특성을 나타내었다. 5. 본 연구에서 설계, 개발한 split beam 음향 변환기의 성능을 분석하기 위해 반사강도 보정을 위한 지향성손실과 물표의 위치각을 추정하기 위한 실험을 행한 결과 실험적으로 추정한 위치각은 실제적인 위치각과 잘 일치하였다.
융합 R&D가 추구해야 할 바람직한 방향은 이종 기술 간의 결합에 의한 맹목적인 신기술 창출이 아니라, 당면한 주요 문제를 해결함으로써 사회적 니즈를 충족시킬 수 있는 기술을 개발하는 것이다. 이와 같은 사회문제 해결형 기술 R&D를 촉진하기 위해서는 우선 우리 사회에서 주요 쟁점이 되고 있는 문제들을 선별해야 한다. 그런데 우선적이고 중요한 사회문제를 분별하기 위해 전문가 설문조사나 여론조사 등 기존의 사회과학 방법론을 사용하는 것은 참여자의 선입견이 개입될 수 있고 비용이 많이 소요된다는 한계를 지닌다. 기존의 사회과학 방법론이 지닌 문제점을 보완하기 위하여 본 논문에서는 사회적 이슈를 다루고 있는 대용량의 뉴스기사를 수집하고 통계적인 기법을 통하여 사회문제를 나타내는 키워드를 추출하는 시스템의 개발을 제안한다. 2009년부터 최근까지 3년 동안 10개 주요 언론사에서 생산한 약 백 30만 건의 뉴스기사에서 사회문제를 다루는 기사를 식별하고, 한글 형태소 분석, 확률기반의 토픽 모델링을 통해 사회문제 키워드를 추출한다. 또한 키워드만으로는 정확한 사회문제를 파악하기 쉽지 않기 때문에 사회문제와 연관된 키워드와 문장을 찾아서 연결하는 매칭 알고리즘을 제안하다. 마지막으로 사회문제 키워드 비주얼라이제이션 시스템을 통해 시계열에 따른 사회문제 키워드를 일목요연하게 보여줌으로써 사회문제를 쉽게 파악할 수 있도록 하였다. 특히 본 논문에서는 생성확률모델 기반의 새로운 매칭 알고리즘을 제안한다. 대용량 뉴스기사로부터 Latent Dirichlet Allocation(LDA)와 같은 토픽 모델 방법론을 사용하여 자동으로 토픽 클러스터 세트를 추출할 수 있다. 각 토픽 클러스터는 연관성 있는 단어들과 확률값으로 구성된다. 그리고 도메인 전문가는 토픽 클러스터를 분석하여, 각 토픽 클러스터의 레이블을 결정하게 된다. 이를 테면, 토픽 1 = {(실업, 0.4), (해고, 0.3), (회사, 0.3)}에서 토픽 단어들은 실업문제와 관련있으며, 도메인 전문가는 토픽 1을 실업문제로 레이블링 하게 되고, 이러한 토픽 레이블은 사회문제 키워드로 정의한다. 그러나 이와 같이 자동으로 생성된 사회문제 키워드를 분석하여 현재 우리 사회에서 어떤 문제가 발생하고 있고, 시급히 해결해야 될 문제가 무엇인지를 파악하기란 쉽지 않다. 따라서 제안된 매칭 알고리즘을 사용하여 사회문제 키워드를 요약(summarization)하는 방법론을 제시한다. 우선, 각 뉴스기사를 문단(paragraph) 단위로 세그먼트 하여 뉴스기사 대신에 문단 세트(A set of paragraphs)를 가지게 된다. 매칭 알고리즘은 각 토픽 클러스터에 대한 각 문단의 확률값을 측정하게된다. 이때 토픽 클러스터의 단어들과 확률값을 이용하여 토픽과 문단이 얼마나 연관성이 있는지를 계산하게 된다. 이러한 과정을 통해 각 토픽은 가장 연관성이 있는 문단들을 매칭할 수 있게 된다. 이러한 매칭 프로세스를 통해 사회문제 키워드와 연관된 문단들을 검토함으로써 실제 우리 사회에서 해당 사회문제 키워드와 관련해서 구체적으로 어떤 사건과 이슈가 발생하는 지를 쉽게 파악할 수 있게 된다. 또한 매칭 프로세스와 더불어 사회문제 키워드 가시화를 통해 사회문제 수요를 파악하려는 전문가들은 웹 브라우저를 통해 편리하게 특정 시간에 발생한 사회문제가 무엇이며, 구체적인 내용은 무엇인지를 파악할 수 있으며, 시간 순서에 따른 사회이슈의 변동 추이와 그 원인을 알 수 있게 된다. 개발된 시스템을 통해 최근 3년 동안 국내에서 발생했던 다양한 사회문제들을 파악하였고 개발된 알고리즘에 대한 평가를 수행하였다(본 논문에서 제안한 프로토타입 시스템은 http://dslab.snu.ac.kr/demo.html에서 이용 가능함. 단, 구글크롬, IE8.0 이상 웹 브라우저 사용 권장).
최근 IT기술의 발전에 따라 많은 사람들이 자신들의 여가활동에 대한 경험을 공유하고 있으며, 역으로 다른 사람들의 여가활동에 대한 경험을 참고하여 더 나은 여가활동을 누릴 수 있는 기회를 얻게 되었다. 이러한 현상은 영화, 숙박, 음식, 여행 등 여가활동 전반에 걸쳐 나타나고 있으며, 그 중심에는 여가활동에 대한 정보를 요약하여 제공하는 수많은 사이트가 있다. 대부분의 여가활동 정보 사이트는 각 상품에 대한 평균 평점뿐만 아니라 상세 리뷰를 제공함으로써, 해당 상품을 구매하고자 하는 잠재고객의 의사결정을 지원하고 있다. 하지만 기존 대부분의 사이트는 한 단계의 평가기준에 따라 평점과 리뷰를 제공하기 때문에, 각 평가기준을 구성하는 세부요소에 대한 특징과 평가기준 별 주요 이슈를 파악하기 위해서는 상당히 많은 수의 리뷰를 직접 읽어야 한다는 불편이 따른다. 즉 사용자는 자신이 중요한 것으로 생각하는 평가기준에 대한 조건을 파악하기 위해, 많은 수의 리뷰를 하나하나 읽어보는 과정에서 많은 시간과 노력을 소비하게 된다. 예를 들어 호텔의 접근성, 객실, 서비스, 음식 등 한 단계의 평가기준만을 사용하여 평점과 리뷰를 제공하는 사이트의 경우, 접근성 중 특히 지하철역과의 거리, 객실 중 특히 욕실의 상태를 살펴보고자 하는 사용자에게 필요한 정보를 충분히 제공하지 못하게 된다. 따라서 본 연구에서는 기존 여가활동 정보 사이트의 한계, 즉 평가기준별로 입력된 리뷰를 신뢰하기 어렵다는 점과 평가기준을 구성하고 있는 세부 내용을 파악하기 어렵다는 점을 극복하기 위한 방안을 제시하고자 한다. 본 연구에서 제안하는 방법론은 사용자가 별도의 구분 없이 입력한 리뷰를 그 내용에 따라 평가기준별로 자동 분류하고, 각 평가 기준 별 주요 이슈를 요약하여 제공한다. 제안 방법론은 최근 텍스트 분석에 활발하게 사용되고 있는 토픽 모델링(Topic Modeling)에 기반을 두고 있으며, 각 리뷰를 하나의 문서 단위로 사용하는 것이 아니라 리뷰를 문장 단위로 끊어 개별 리뷰 유닛(Review Unit)으로 분해한 뒤, 평가기준별로 리뷰 유닛을 재구성하여 분석한다는 측면에서 기존의 토픽 모델링 기반 연구와 큰 차이가 있다고 할 수 있다. 본 논문에서는 제안 방법론을 실제 호텔 정보 사이트에서 수집한 423건의 리뷰 문서에 적용하여 6가지 평가기준에 대해 총 4,860건의 리뷰 유닛을 재구성하고, 이에 대한 분석 결과를 소개함으로써 제안 방법론의 유용성을 간접적으로 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.