• Title/Summary/Keyword: 식물 방어

Search Result 162, Processing Time 0.037 seconds

Oxidative Stress-dependent Structural and Functional Regulation of 2-cysteine Peroxiredoxins In Eukaryotes Including Plant Cells (산화 스트레스에 의존한 식물 및 진핵세포 2-시스테인 퍼록시레독신의 기능 조절)

  • Jang, Ho-Hee;Kim, Sun-Young;Lee, Sang-Yeol
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Peroxiredoxins (Prxs) are ubiquitously distributed and play important functions in diverse cellular signaling systems. The proteins are largely classified into three groups, such as typical 2-Cys Prx, atypical 2-Cys Prx, and 1-Cys Prx, that are distinguished by their catalytic mechanisms and number of Cys residues. From the three classes of Prxs, the typical 2-Cys Prx containing the two-conserved Cys residues at its N-terminus and C-terminus catalyzes $H_2O_2$ with the use of thioredoxin (Trx) as an electron donor. During the catalytic cycle, the N-terminal Cys residue undergoes a peroxide-dependent oxidation to sulfenic acid, which can be further oxidized to sulfinic acid at the presence of high concentrations of $H_2O_2$ and a Trx system containing Trx, Trx reductase, and NADPH. The sulfinic acid form of 2-Cys Prx is reduced by the action of sulfiredoxin which requires ATP as an energy source. Under the strong oxidative or heat shock stress conditions, 2-Cys Prx in eukaryotes rapidly switches its protein structure from low-molecular-weight species to high-molecular-weight protein structures. In accordance with its structural changes, the protein concomitantly triggers functional switching from a peroxidase to a molecular chaperone, which can protect its substrate denaturation from external stress. In addition to its N-terminal active site, the C-terminal domain including 'YF-motif' of 2-Cys Prx plays a critical role in the structural changes. Therefore, the C-terminal truncated 2-Cys Prxs are not able to regulate their protein structures and highly resistant to $H_2O_2$-dependent hyperoxidation, suggesting that the reaction is guided by the peroxidatic Cys residue. Based on the results, it may be concluded that the peroxidatic Cys of 2-Cys Prx acts as an '$H_2O_2$-sensor' in the cells. The oxidative stress-dependent regulation of 2-Cys Prx provides a means of defense systems in cells to adapt stress conditions by activating intracellular defense signaling pathways. Particularly, 2-Cys Prxs in plants are localized in chloroplasts with a dynamic protein structure. The protein undergoes conformational changes again oxidative stress. Depending on a redox-potential of the chloroplasts, the plant 2-Cys Prx forms super-molecular weight protein structures, which attach to the thylakoid membranes in a reversible manner.

Preparation of an Inactivated Influenza Vaccine Using the Ethanol Extracts of Medical Herbs (한약재 식물 에탄올추출물을 이용한 인플루엔자 불활화백신 제작)

  • Cho, Sehee;Lee, Seung-Hoon;Kim, Seonjeong;Cheong, Yucheol;Kim, Yewon;Kim, Ju Won;Kim, Su Jeong;Seo, Seungin;Seo, Dong-Won;Lim, Jae-Hwan;Jeon, Sejin;Jang, Yo Han
    • Journal of Life Science
    • /
    • v.32 no.12
    • /
    • pp.919-928
    • /
    • 2022
  • As seen in the COVID-19 pandemic, unexpected emergence of new viruses presents serious concern on public health. Especially, the absence of effective vaccines or antiviral drugs against emerging viruses significantly increases the severity of disease and duration of viral circulation among population. Natural products have served as a major source for safe and effective antiviral drugs. In this study, we examined the virucidal activity of medical herb extracts with a view to discover novel antiviral agents with desired levels of safety and antiviral efficacy. Ethanol extracts of ten selected medical herbs were tested for antioxidant activity and in-vitro cytotoxicity in various animal cell lines. Of note, the herbal extracts showed broad and potent virucidal activities against rotavirus, hepatitis A virus, and influenza A virus. The extracts of Sorbus commixta and Glycyrrhiza uralensis showed strong virucidal activities against influenza A virus. We also examined whether the extracts of Sorbus commixta and Glycyrrhiza uralensis can be used as inactivating agents to prepare an inactivated viral vaccine. In a mouse model, influenza A virus inactivated by the extracts elicited high levels of neutralizing antibodies, and the vaccination provided complete protection against lethal challenge. These results suggest that herb-derived natural products can be developed to antiviral drugs as well as inactivating agents for preparation of inactivated viral vaccines.

Resistance Function of Woody Landscape Plants to Air Pollutants(II) - POD Activity - (조경수목(造景樹木)의 대기오염물질(大氣汚染物質)에 대한 방어기능(防禦機能)(II) - POD 활성(活性)을 중심으로 -)

  • Kim, Myung Hee;Lee, Soo Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.3
    • /
    • pp.234-246
    • /
    • 1992
  • This study was conducted to determine the toxic effects of air pollutants on landscaping tress, Pinus densiflora, Pinus koraiensis, Ginkgo biloba, Liriodendron tulipifera, Platanus occidentalis and their resistance to the pollutant toxicity in urban and industrial regions of Seoul and Taejon, Korea. Total sulfur contents and enzyme activities such as superoxide dismutase and peroxidase were analyzed in tree foliage of Pinus densiflora, Pinus koraiensis, Ginkgo biloba, Liriodendron tulipifera, Platanus occidentalis. In addition, POD activity was analyzed in the foliage on tree seedlings, i.e. Pinus densiflora, Pinus koraiensis, Ginkgo biloba, Lirioderdron tulipifera, with the fumigation of $SO_2$ in gas chamber 4 hours a day for six days. In Ginkgo biloba total sulfur content and POD activity had a negative correlation while other species had a positive relationship in total sulfur content and enzyme activity. Air pollutants accumulated in tree tissues were supposed to enhance the enzyme activity like POD providing the resistance mechanisms. Especially Pinus koraiensis and Platanus occidentalis had higher POD activity than other species. The increase of temporary POD activity against environmental stress appeared in sensitive trees and prolonged increase of POD activity played an important role in resistance mechanism. SOD and POD activities in all species had a positive correlation except Ginkgo biloba. Changes of SOD and POD activities were different between species and in most species SOD as well as POD seemed to participate in resistance mechanism.

  • PDF

Cloning and Expression of Antifungal Protein (PR5) Genes from Hot Pepper (Capsicum annuum L.) (고추(Capsicum annuum)의 항균성 단백질(PR-5) 유전자의 클로닝과 발현 분석)

  • Park, Hae-Jin;Lee, Jung-Hoon;Yoon, Yong-Hwi;Kim, Hak-Yoon;Shin, Dong-Hyun;Lee, In-Jung;Kim, Dal-Ung;Kim, Kil-Ung
    • Journal of Life Science
    • /
    • v.12 no.3
    • /
    • pp.264-273
    • /
    • 2002
  • We have isolated and artificially expressed three cDNA clones of Capsicum annuum PR5 genes for elucidating the antifungal activity against Phytophthora capsici which contracted a hot pepper root rot in field condition. Three divergent PR5 proteins from hot pepper were designated as CAPR5-1 and CAPR5-2 from susceptible cultivar (Subicho) as well as CAPR5-3 from resistant cultivar (CM331) in response to P. capsici. The cDNA similarity was found over 80% of identity among the three CAPR5s, and deduced amino acid sequence was characterized that all of CAPR5s contained 16 cysteine residues which possibly had a significant role in the structural formation. The result of genomic DNA blot showed that CAPR5-1 and CAPR5-2 existed as single copy in the Subicho genome. Three recombinant CPARs in E. coli were identified by SDS-PACE, and each expressed protein was treated on the PDA medium which contained cultured pathogens. Although three CAPR5 proteins did not affected the hyphal growth of Glomerella glycines and Colletotrichum fagenarium, CAPR5-1, CAPR5-2, and CAPR5-3 showed a specific antifungal activities against P. capsici.

Molecular cloning and characterization of β-1,3-glucanase gene from Zoysia japonica steud (들잔디로부터 β-1,3-glucanase 유전자의 클로닝 및 특성분석)

  • Kang, So-Mi;Kang, Hong-Gyu;Sun, Hyeon-Jin;Yang, Dae-Hwa;Kwon, Yong-Ik;Ko, Suk-Min;Lee, Hyo-Yeon
    • Journal of Plant Biotechnology
    • /
    • v.43 no.4
    • /
    • pp.450-456
    • /
    • 2016
  • Rhizoctonia leaf blight (large patch) has become a serious problem in Korean lawn grass, which is extremely hard to treat and develops mostly from the roots of lawn grass to wither it away. Rhizoctonia leaf blight (large patch) is caused by Rhizoctonia solani AG2-2 (IV). To develop zoysia japonica with strong disease tolerance against this pathogenic bacterium, ${\beta}-1,3-glucanase$ was cloned from zoysia japonica, which is one of the PR-Proteins known to play a critical role in plant defense reaction. ${\beta}-1,3-glucanase$ is known to be generated within the cells when plant tissues have a hypersensitive reaction due to virus or bacterium infection and secreted outside the cells to play mainly the function of resistance against pathogenic bacteria in the space between the cells. This study utilized the commonly preserved part in the sequence of corn, wheat, barley, and rice which had been researched for their disease tolerance among the ${\beta}-1,3-glucanase$ monocotyledonous plants. Based on the part, degenerate PCR was performed to find out the sequence and full-length cDNA was cloned. E.coli over-expression was conducted in this study to mass purify target protein and implement in vitro activation measurement and antibacterial test. In addition, to interpret the functions of ZjGlu1 gene, each gene-incorporating plant transformation vectors were produced to make lawn grass transformant. Based on ZjGlu1 protein, antibacterial activity test was conducted on 9 strains. As a result, R. cerealis, F. culmorum, R.solani AG-1 (1B), and T. atroviride were found to have antibacterial activity. The gene-specific expression amount in each organ showed no huge difference in the organs based upon the transformant and against 18s gene expression amount.

Effects of Salicylate on the Activity of Isoperoxidase $A_3$ from Tobacco Callus (Salicylate가 담배 미분화세포 isoperoxidase $A_3$의 활성에 미치는 영향)

  • 이미영
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.3
    • /
    • pp.211-217
    • /
    • 2001
  • Salicylate is involved in the induction of pathogen-related proteins and plant defense response. The effects of salicylate on the activity isoperoxidase $A_3$ from tobacco callus (Nicotiana tabacum L.) and the protection against the enzyme inactivation by salicylate in the presence of $Fe^{2+}$ were examined. About 20% and 85% activity losses of peroxidase occurred at 0.48 mM and 0.6 mM salicylate, respectively, showing that isoperoxidase $A_3$ was inactivated by salicylate. The inactivation occurred depending on pH and showed noncompetitive inhibition mode. Moreover, inactivation of the enzyme by salicylate was completely protected in the presence of $Fe^{2+}$. Apoperoxidase without heme moiety was constructed and the effects of various metal ions on the recovery of enzyme activities were investigated. More than 80% of the activity was reconstituted by the addition of $Fe^{2+}$ or hemin. However, the enzyme activity was not recovered by $Cu^{2+},\;Zn^{2+},\;Co^{2+},\;or\;Mn^{2+}$.

  • PDF

Isolation of formaldehyde-responsive proteins in Arabidopsis (Formaldehyde에 반응하는 애기장대 단백질의 분리)

  • Kwon, Mi;Park, Hyun Jin;Seo, Jae Hyun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.52-60
    • /
    • 2007
  • Plant can detoxify the effect of the volatile organic compounds (VOC) such as formaldehyde and toluene, however, mechanisms of VOC detoxification are largely unknown in plant system. This study was performed to investigate phenotypic changes of Arabidopsis seedlings upon treatment of either formalin or toluene. Formalin treatment up to twenty four hours didn't cause any significant phenotypic damages on the leaf surface of 27 DAG Arabidopsis seedlings. However, the protein profile of formalin-treated seedlings was significantly different from that of mock control. Using automated electrophoresis system, the molecular weight of each formaldehyde-responsive protein (FRP) was predicted and its formaldehyde-dependent expression was confirmed at transcription level by quantitative real-time RT-PCR analysis. Four FRPs isolated in this study are the novel proteins with unknown functions but highly homologous to the stress-related proteins.

Studies on a PR4 Gene for Breeding Disease Resistant Forage Crops (내병성 목초 품종개량을 위한 PR4 유전자의 연구)

  • Cha, Joon-Yung;Ermawati, Netty;Jung, Min-Hee;Kim, Ki-Yong;Son, Dae-Young
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.27 no.4
    • /
    • pp.241-248
    • /
    • 2007
  • Cytokinins are essential plant hormones that play crucial roles in various aspects of plant growth and development. By using mRNA differential display, we isolated a cytokinine-inducible cDNA encoding pathogenesis-related (PR) 4 from Arabidopsis amp1 mutant. The full-length PR4 cDNA, designated AtPR4, contains an open reading frame of 212 amino acids with calculated molecular mass of 22,900 Da and isoelectric point (pI) of 7.89. Genomic DNA blotting showed that the Arabidopsis genome has one copy of AtPR4. AtPR4 mRNA was induced by cytokinin and NaCl, but decreased by SA or JA treatment. PR proteins are induced in response to pathogen attack. Thus the AtPR4 gene isolated in this study may be a useful candidate for genetic engineering of forage crops for increased tolerance against pathogen.

Inhibitory Effects of Serotonin Derivatives on Adipogenesis (홍화씨 추출물 유래 세로토닌 유도체의 지방전구세포 분화억제 효능에 대한 연구)

  • Jung, Eun-Sun;Kim, Seung-Beom;Kim, Moo-Han;Shin, Seong-Woo;Lee, Jong-Sung;Park, Deok-Hoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.2
    • /
    • pp.171-176
    • /
    • 2011
  • N-feruloylserotonin (FS) and N-(pcoumaroyl) serotonin (CS), serotonin derivatives, which have been isolated as major and unique phenolics of safflower seed extract (SSE), are member of hydroxycinnamic acid amides and are implicated in the defense against pathogen infection and insect feeding. In this study, we evaluate inhibitory effects of N-(p-Coumaroyl)serotonin and N-Feruloylserotonin on adipogenesis using oil-red O staining, triglyceride and GPDH activity. we found that while serotonin itself did not suppress differentiation of preadipocytes into adipocytes, N-(p-Coumaroyl)serotonin and N-Feruloylserotonin inhibited the differentiation of preadipocytes into adipocytes in a concentration-dependent manner. In addition, they showed antioxidant effects in DPPH assay. Taken together, these results show that N-feruloylserotonin (FS) and N-(pcoumaroyl) serotonin (CS) suppress differentiation of preadipocytes, suggesting the possibility that these serotonin derivatives can be utilized as an anti-obesity agent.

Predicting of the $^{14}C$ Activity in Rice Plants Exposed to $^{14}CO_2$ Gas for a Short Period of Time ($^{14}CO_2$가스에 단기간 노출된 벼의 $^{14}C$ 오염 예측)

  • Jun, In;Lim, Kwang-Muk;Keum, Dong-Kwon;Choi, Young-Ho;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.4
    • /
    • pp.135-141
    • /
    • 2008
  • This paper describes a dynamic compartment model to predict the time-dependent $^{14}C$ activity in a plant as a result of a direct exposure to an amount of $^{14}CO_2$ for a short period of time, and experimental results for the model validation. In the model, the plant consists of two compartments of the body and ears, and five carbon fluxes between the compartments, which are the function of parameters relating to the growth and photosynthesis of a plant, are considered. Model predictions were made for an investigation into the effects of the exposure time, the elapsed exposure time, and the model parameters on the $^{14}C$ radioactivity of a plant. The present model converged to a region where the specific activity model is applicable when the elapsed time of the exposure was extended up to the harvest time of a plant. The $^{14}C$ activity of a plant was predicted to be the greatest when the exposure had happened in the period between the flowering and ears-maturity on account of the most vigorous photosynthesis rate for the period. Comparison of model predictions with the observed 14C radioactivity of rice plants showed that the present model could predict the $^{14}C$ radioactivity of the rice plants reasonably well.