• Title/Summary/Keyword: 식물오일

Search Result 143, Processing Time 0.028 seconds

Production of Biodiesel Using Immobilized Lipase from Proteus vulgaris (Proteus vulgaris에서 유래한 리파아제의 고정화 및 바이오디젤 생산)

  • Yoon, Shin-Ah;Han, Jin-Yee;Kim, Hyung-Kwoun
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.238-244
    • /
    • 2011
  • Biodiesel, mono-alkyl esters of long chain fatty acids, is one of the alternative fuels derived from renewable lipid feedstock, such as vegetable oils or animal fats. For decade, various lipases have been used for the production of biodiesel. However, the production of biodiesel by enzymatic catalyst has profound restriction in industry application due to high cost. To overcome these problems, many research groups have studied extensively on the selection of cheap oil sources, the screening of suitable lipases, and development of lipase immobilization methods. In this study, we produced biodiesel from plant oil using Proteus vulgaris lipase K80 expressed in Escherichia coli cells. The recombinant lipase K80 was not only expressed in high level but also had high specific lipase activity and high stability in various organic solvents. Lipase K80 could produce biodiesel from olive oil by 3-stepwise methanol feeding method. The immobilized lipase K80 also produced biodiesel using the same 3-stepwise method. The immobilized lipase could produce biodiesel efficiently from various plant oils and waste oils.

Assessing the Potential Utilization Value of Peony Byproducts: Comparative Evaluation of Bioactivities in Peony Seed Oil and Cake Extract (작약 종자 오일 및 유박 추출물의 생리활성 비교를 통한 작약 부산물의 잠재적 이용 가치 평가)

  • Hamin Lee;Kyungtae Park;Huijin Heo;Junsoo Lee;Kwang-Yup Kim;Ju-Sung Cho
    • Korean Journal of Plant Resources
    • /
    • v.36 no.5
    • /
    • pp.446-454
    • /
    • 2023
  • This study aimed to assess the potential use of Paeonia lactiflora Pall. seed cake (PSC). The extraction yield of the PSC extract ranged from 22% to 45%, depending on the extraction solvent used. The PSC extract showed significantly higher levels of total polyphenols and flavonoids contents, and radical scavenging compared to the P. lactiflora seed oil (PSO) extract. The antibacterial activity of the PSC extract was superior to that of the positive control and remained effective for up to 48 hours. Furthermore, when the PSC extract was applied, it significantly reduced the inflammatory response induced by LPS, demonstrating the anti-inflammatory activity of PSC. This study confirmed the effective bioactivity not only in PSO, but also in the PSC extract, highlighting the potential of PSC as a bio-health ingredient.

Effects of lymphocyte DNA damage levels in Korean plant food groups and Korean diet regarding to glutathione S-transferase M1 and T1 polymorphisms (건강한 성인의 glutathione S-transferase M1과 T1 유전자 다형성에 따른 한식에서의 식물성 식품군과 한식의 DNA 손상 감소 효과)

  • Kim, Hyun-A;Lee, Min-Young;Kang, Myung-Hee
    • Journal of Nutrition and Health
    • /
    • v.50 no.1
    • /
    • pp.10-24
    • /
    • 2017
  • Purpose: GST (glutathione S-transferase) M1 and T1 gene polymorphisms are known to affect antioxidant levels. This study was carried out to evaluate genetic susceptibility by measuring the effect of DNA damage reduction in the Korean diet by vegetable food according to GST gene polymorphisms using the ex vivo method with human lymphocytes. Methods: Vegetable foods in the Korean diet based the results of the KNHANES V-2 (2011) were classified into 10 food groups. A total of 84 foods, which constituted more than 1% of the total intake in each food group, were finally designated as a vegetable food in the Korean diet. The Korean diet applied in this study is the standard one-week meals for Koreans (2,000 Kcal/day) suggested by the 2010 Dietary Reference Intakes for Koreans. Ex vivo DNA damage in human lymphocytes was assessed using comet assay. Results: In the Korean food group, the DNA damage protective effect of GSTM1 and GSTT1 was found to be greater in mutant type and wild-type, respectively. and the DNA damage protective effect according to the combined genotype of GSTM1 and GSTT1 was different depending on the food group. On the other hand, in Korean Diet, the DNA damage protective effect appeared to be larger in GSTM1 wild-type than in mutant type and was found to not be affected by GSTT1 genotype. Conclusion: These results can be used as basic data to demonstrate the superiority of the antioxidant function of Korean dietary patterns and food groups. Furthermore, it may be a starting point to begin research on customized antioxidant nutrition according to individual genes.

Effect of Essential Oils and Paraffin Oil on Black Cutworm, Agrotis ipsilon (Lepidoptera: Noctuidae) (식물정유와 파라핀오일이 검거세미나방에 미치는 영향)

  • Lee, Dong Woon;Potter, D.A.
    • Weed & Turfgrass Science
    • /
    • v.2 no.1
    • /
    • pp.62-69
    • /
    • 2013
  • The black cutworm, Agrotis ipsilon (Hufnagel), damages various cultivated crops and it can also be a serious pest of turfgrass, especially on golf courses. Essential oils have potential as alternative control agents for insect pests. Sixteen essential oils (anise, camphor, cinnamon, citronella, clove, fennel, geranium, lavender, lemongrass, linseed, neem, peppermint, pine, thyme, turpentine and tea saponin) and paraffin oil were assessed in the laboratory, the green house and field trials for their efficacy against black cutworms in turf. Treatment of potted cores of perennial ryegrass turf with anise, cinnamon, neem, paraffin or turpentine reduced black cutworm damage in a greenhouse trial, and in a similar trial, applying neem oil at 4000, 2000 and 1000 ppm resulted in 100, 100 and 64% mortality, respectively, of black cutworms. Weight of survivors at the 1000 ppm rate was 5- fold less than weight of comparably-aged controls. Neem oil (2000 ppm) reduced growth of black cutworms feeding on treated clippings. A high rate of neem oil followed by irrigation (0.1 L of 20000 ppm neem oil with 0.9 L watering/$m^2$) was more effective than a lower concentration (1 L of 2000 ppm neem oil/$m^2$) against $2^{nd}$ and $3^{rd}$ instars in potted turf cores and field plots, respectively. However, not even the aforementioned higher rate effectively controlled $4^{th}$ instars in the field.

Control of Yam-Putrefactive Psychrotrophic Bacterium Using Clove Oil and Preparation of Functional Fresh-Cut (클로버 오일을 이용한 생마 저온부패균의 제어 및 기능성 생마 신선편이의 제조)

  • Ryu, Hee-Young;Park, Sang-Jo;Lee, Bong-Ho;Sohn, Ho-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.1
    • /
    • pp.66-72
    • /
    • 2007
  • Yam has been recognized as healthy food due to its various biological activities, such as anti-obesity, antimicrobial, anticancer and immune-stimulation activities. In this study, antibacterial activities of 800 more natural plant extracts against yam-putrefactive psychrotrophic bacterium, Pseudomonas rhodesiae YAM-12, were evaluated to select a natural preservative, which is useful to long-term storage of yam and fresh-cut production. Finally, the clove oil was selected, and applied for the production of yam fresh-cut. The 1% of clove oil treated fresh-cut showed minor color changes during 31 days storage at $4^{\circ}C$ and the microbial growth was not detected. When the artificially contaminated fresh cut by dipping with P. rhodesiae YAM-12 suspension for 3 min was treated 1% clove oil, the microbial growth was identified to $10^4$ CFU/g from $10^3$ CFU/g with minor color changes. Whereas, treatment of sterilized water, or 100 ppm NaOCl into artificially contaminated fresh cut showed severe putrefaction $(10^8\;CFU/g)$ and color changes. Considering the previous reports that clove oil has antimicrobial, antioxidation, and antithrombosis activity, the use of clove oil into the yam fresh cut will provide market safety and consumer acceptability by prevention of microbial putrefaction and its biological activity.

Conversion Characteristics on Beef-Tallow and Sunflower Oil Blend Biodiesel and its Treatment Method to Reduce Kinematic Viscosity (우지-해바라기유 오일혼합 바이오디젤의 전환 특성과 동점도 처리에 따른 오일혼합 바이오디젤의 동점도 변화 특성)

  • Woo, Duk-Gam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.380-389
    • /
    • 2020
  • The conversion characteristics and fuel properties for producing biodiesel (BD) by blending beef-tallow, an animal waste resource with a high-saturated fatty acid content, and sunflower-oil, a vegetable oil with a high-unsaturated fatty acid content, were investigated. For this investigation, the effects of the control factors, such as the oil-blend ratio and methanol-to-oil molar ratio, on the fatty acid methyl ester and BD production yield were also investigated. The kinematic viscosity reduction effects of BD using heating and ultrasonic irradiation were verified, and the optimal temperature of each BD-diesel fuel blend for reducing the kinematic viscosity was derived using the correlation equation. As a result, the optimal conditions for producing blended biodiesel were verified to be TASU7 and a methanol-to-oil molar ratio of 10:1. The analysis results of the fuel properties of TASU7 satisfied the BD quality standard; hence, the viability of BD blended with waste tallow as fuel was verified. The experimental results on the kinematic viscosity reduction showed that heating is more effective in reducing the kinematic viscosity because it took less time than ultrasonic irradiation, and the equipment was cheaper and more straightforward than the ultrasonic irradiation method.

Development of herbicide-tolerant Korean rapeseed (Brassica napus L.) cultivars (한국 고유의 품종을 이용한 제초제 저항성 유채 개발)

  • Kim, Hyo-Jin;Lee, Hye-Jin;Go, Young-Sam;Roh, Kyung-Hee;Lee, Young-Hwa;Jang, Young-Seok;Suh, Mi-Chung
    • Journal of Plant Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.319-326
    • /
    • 2010
  • An interest in the production of seed-oil based fuel and raw materials, which comes from renewable plant sources, has been intrigued by the phenomenon of global warming and shortage of fossil fuels. Rapeseed (Brassica napus) is the most important oilseed crop, which produces seeds with 40% oil. It is desirable to develop genetically modified rapeseed producing oils, which can be easily converted to biodiesel. As an initial step for development of genetically modified rapeseed for the production of biofuels or bio-based materials, Korean rapeseed cultivars, Naehan, Youngsan, Tammi and Halla, were analyzed. Four Korean rapeseed cultivars produce 32 to 40% oil of seed dry weight, which is rich in oleic acid (more than 60 mole%). The cotyledonary petioles of rapeseed cultivar, Halla, were transformed using Agrobacterium tumefaciens strain GV3101, carrying the uidA gene encoding $\beta$-glucuronidase (GUS) as a reporter gene and the phosphinothricin acetyltransferase (PAT) gene as a selectable marker. The stable integration of PAT gene in the genome of transgenic rapeseeds was confirmed by PCR analysis. Expression of uidA gene in various rapeseed organs was determined by fluorometric assay and histochemical staining. Transformation efficiency of a Korean rapeseed Halla cultivar was 10.4%. Genetic inheritance of transgenes was confirmed in $T_2$ generation.

Biodiesel Production from Vegetable Oils by Transesterification Using Ultrasonic Irradiation (초음파를 이용한 에스테르 교환 반응에 의한 식물성 유지로부터 바이오디젤 제조)

  • Chung, Kyong-Hwan;Park, Byung-Geon
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.385-390
    • /
    • 2010
  • Transesterifications of vegetable oils (soybean oil, grapeseed oil, corn oil, canola oil) by ultrasonic energy were examined on various catalysts for biodiesel production. Reaction activities of the transesterifications were evaluated to the ultrasonic energy and thermal energy. The physicochemical properties and product distribution were also investigated to the biodiesels produced from the oils in the reaction using ultrasonic energy. The yields of fatty acid methyl ester (FAME) on the alkali catalysts were higher than those on the acid catalysts. The highest FAME yield was obtained as 83% on potassium hydroxide catalyst in the transesterification. The effective reaction conditions by ultrasonic energy were 1 wt% catalyst loading and 6:1 molar ratio of methanol to vegetable oils. The reaction rate of the transesterification by ultrasonic energy was faster than that by thermal energy. The acid values of the biodiesel products were improved above 30% compared to those of the feedstocks.

Esterification for biodiesel production from dark oil (Dark oil로부터 바이오디젤 생산을 위한 에스테르화 반응 특성)

  • Park, Ji-Yeon;Kim, Deog-Keun;Na, Jong-Boon;Woo, Sang-Sun;Lee, Jin-Suk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.105.1-105.1
    • /
    • 2010
  • 바이오디젤 보급 활성화에 따른 식물성 원료유의 가격 상승 및 수급 불안정성 문제를 해결하고자 폐유지를 원료로 바이오디젤을 생산하고자 하는 시도가 이루어지고 있다. 폐유지의 사용은 폐자원 활용 측면에서 의미가 있으며 바이오디젤 생산 단가를 낮출 수 있다. 다양한 폐유지가 산업체로부터 배출되며 이 중에서 dark oil은 식용유 공장에서 식물성 원료유의 정제 과정에서 생기는 부산물로 바이오디젤로 전환 가능한 성분을 포함하고 있다. 본 연구에 사용된 dark oil은 54.9%의 유리지방산과 28.0%의 triglyceride, 4.4%의 diglyceride, 그리고 1% 이하의 monoglyceride를 함유하고 있다. Dark oil의 초기 산가는 109.8 mg KOH/g이었다. 본 연구에서는 dark oil의 유지 부분(triglyceride, diglyceride, monoglyceride)을 유리지방산으로 전환시켜 HAAO(high acid acid oil)을 생산한 후, 고체 산 촉매에 의한 에스테르화 반응을 통하여 바이오디젤을 생산하고자 하였다. 유지 부분의 유리지방산 전환 반응을 위하여 음이온성 계면활성제인 SDBS(sodium dodecyl benzene sulfonate)가 사용되었다. Dark oil:황산:물의 질량비가 10:2:10이고 SDBS가 오일 대비 3%인 조건에서 dark oil의 산가는 190.8 mg KOH/g까지 증가하였고, dark oil:황산:물의 질량비가 10:4:10이고 SDBS가 2%인 조건에서는 산가가 194.2 mg KOH/g까지 증가하였다. 생산된 HAAO을 이용하여 오일 대비 30%의 Amberlyst-15 촉매 하에서 HAAO:메탄올 몰비 1:9인 조건에서 에스테르화 반응을 수행하였을 경우 FAME(fatty acid methyl ester) 함량은 81.3%까지 증가하였다. 고체 산 촉매로써 Amberlyst-15와 가격 면에서 저렴한 PC101을 비교하였을 경우 FAME 함량은 각각 80.7%, 77.9%로 비슷한 효율을 나타내었다. 생산된 바이오디젤의 FAME 함량을 높이기 위해 증류 공정을 필요로 하였다.

  • PDF

A Study on the Characteristics of Manufactured Photocatalyst Using maleinized Acrylated Epoxidized Soybean Oil for the Dye-sensitized Solar Cell (염료감응 태양전지를 위한 Maleinized Acrylated Epoxidized Soybean Oil를 이용하여 제조된 광촉매의 특성에 관한 연구)

  • Park, Ki-Min;Kim, Tae-Young;Kim, Jeong-Guk;Cho, Sung-Yong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.381-386
    • /
    • 2011
  • Chemically functionalized plant oils, namely maleinized acrylated epoxidized soybean oil(MAESO), were used as a new bio based binders for photoelectrodes of dye-sensitized solar cells. The photocatalysts were characterized by field emission scanning electron microscope(FE-SEM), energy dispersive X-ray spectrometer(EDS), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and nitrogen adsorption analyses. The surface area and number of appropriate pores were increased in the $TiO_{2}$ particles prepared using the plant oil binders in comparison with the P-25 photocatalyst, due to the larger number of functionalities. The functional groups of OH on the surface of the $TiO_{2}$ particles increased from 9.9% to 16.62%.