Browse > Article

Biodiesel Production from Vegetable Oils by Transesterification Using Ultrasonic Irradiation  

Chung, Kyong-Hwan (Center for Functional Nano Fine Chemicals, Chonnam National University. Hallim Research Institute of Technology)
Park, Byung-Geon (Department of Food and Nutrition, Kwangju Women’s University)
Publication Information
Applied Chemistry for Engineering / v.21, no.4, 2010 , pp. 385-390 More about this Journal
Abstract
Transesterifications of vegetable oils (soybean oil, grapeseed oil, corn oil, canola oil) by ultrasonic energy were examined on various catalysts for biodiesel production. Reaction activities of the transesterifications were evaluated to the ultrasonic energy and thermal energy. The physicochemical properties and product distribution were also investigated to the biodiesels produced from the oils in the reaction using ultrasonic energy. The yields of fatty acid methyl ester (FAME) on the alkali catalysts were higher than those on the acid catalysts. The highest FAME yield was obtained as 83% on potassium hydroxide catalyst in the transesterification. The effective reaction conditions by ultrasonic energy were 1 wt% catalyst loading and 6:1 molar ratio of methanol to vegetable oils. The reaction rate of the transesterification by ultrasonic energy was faster than that by thermal energy. The acid values of the biodiesel products were improved above 30% compared to those of the feedstocks.
Keywords
biodiesel; ultrasonic irradiation; transesterification; vegetable oil; catalyst;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 A. Dermirbas, Fuel, 87, 1743 (2008).   DOI   ScienceOn
2 L. T. Thanh, K. Okitsu, Y. Sadanaga, N. Takenaka, Y. Maeda, and H. Bandow, Biores. Technol., 101, 639 (2010).   DOI   ScienceOn
3 L. S. G. Teixeira, J. C. R. Assis, D. R. Mendonca, I. T. V. Santos, P. R. B. Guimaraes, L. A. M. Pontes, and J. S. R. Teixeira, Fuel Processing Technol., 90, 1164 (2009).   DOI   ScienceOn
4 H. D. Hanh, N. T. Dong, C. Starvarache, K. Okitsu, Y. Maeda, and R. Nishimura, Energ. Convers. Manage., 49, 276 (2008).   DOI   ScienceOn
5 J. van Gerpen, B. Shanks, R. Pruszko, D. Clements, and G. Knothe, Biodiesel Analytical Methods, NREL/SR-510-36240.
6 T.-S. Koh and K.-H. Chung, J. Korean Ind. Eng. Chem., 19, 214 (2008).
7 K.-H. Chung, J. Kim, and K.-Y. Lee, Biomass Bioenergy, 33, 155 (2009).   DOI   ScienceOn
8 S.-S. Kim, K.-H. Kim, S.-C. Shin, and E.-S. Yim, J. Korean Ind. Eng. Chem., 18, 401 (2007).
9 C.-S. Jung and J.-I. Dong, J. Korean Ind. Eng. Chem., 18, 284 (2007).
10 M. J. Ramos, C. M. Fernandez, A. Casa, L. Rodriguez, and A. Perez, Biores. Technol., 100, 261 (2009).   DOI   ScienceOn
11 S. Saka and K. Dadan, Fuel, 80, 225 (2001).   DOI   ScienceOn
12 www.astm.org
13 D. Kusdiana and S. Saka, Fuel, 80, 693 (2001).   DOI   ScienceOn
14 D. Kusdiana and S. Saka, Biores. Technol., 91, 289 (2004).   DOI   ScienceOn
15 C. Stavarache, M. Vinatoru, Y. Maeda, and H. Bandow, Ultrasonics Sonochemistry, 14, 413 (2006).
16 K. G. Georgogianni, A. K. Katsoulidis, P. J. Pomonis, G. Manos, and M. G. Kontonminas, Fuel Processing Technol., 90, 1016 (2009).   DOI   ScienceOn
17 F. F. P. Santos, J. Q. Malverira, M. G. A. Cruz, and F. A. N. Fernandes, Fuel, 89, 275 (2010).
18 W. Hiroaki, ENEOS Technical Review, 47, 11 (2005).