• Title/Summary/Keyword: 시험챔버

Search Result 316, Processing Time 0.026 seconds

Development of High Pressure Sub-scale Regeneratively Cooled Combustion Chambers (고압 축소형 재생냉각형 연소기 개발)

  • Kim, Jong-Gyu;Lee, Kwang-Jin;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.6
    • /
    • pp.8-16
    • /
    • 2009
  • The development of high-pressure sub-scale combustion chambers is described. A total of four high-pressure sub-scale combustion chambers having either a detachable structure of the mixing head and the chamber or a single welded regenerative cooling structure have been developed. The sub-scale combustion chambers have a chamber pressure of 70 bar and propellant mass flow rate of 5.1~9.1 kg/s. The propellant mass flow rate and the recess number of the injector were changed for the improvement of combustion performance and they were validated through hot firing tests. The design and manufacturing techniques of regenerative cooling channel and film cooling to be applied to the full-scale combustion chamber were adopted through the present development and verified.

A Study on the Fire Sources Analysis Using the Optical Characteristics of Smoke Particles and Neural Networks (연기입자의 광학적 특성과 신경망을 이용한 화원분석에 대한 연구)

  • Jee, Seung-Wook
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.64-70
    • /
    • 2014
  • The neural networks were able to be used by analyze fire source with the optical characteristics of smoke particles. The neural networks were learned the optical characteristics for three types test fire (paper, wood, flammable liquid). These test fires which were adopted in this study were also used to performance test of smoke detector according to UL268. A smoke chamber which was able to detect light extinction and scattering simultaneously was created. The optical characteristics of smoke particles were measured by the smoke chamber. And the results were used to input data for the neural networks. The neural networks distinguished the fire source accurately for paper fire, wood fire or flammable liquid fire. The neural networks distinguished accurately the combined fire source such as paper-wood fire, paper-flammable liquid fire or wood-flammable liquid fire.

Autofocusing Mechanism of a Triple-Magnification Infrared System (3중 배율 적외선 영상 장비의 자동 초점 조절 방안)

  • Jung, Hyojung;Jeong, Suseong;Yang, Yunseok;Lee, Yongchun;Han, Jeongsu
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.6
    • /
    • pp.314-320
    • /
    • 2020
  • The optics used in an infrared imaging system has a strong refractive-index change according to temperature, so an autofocus control function is essential for a military infrared imaging system with a wide operating-temperature range. In this study, we design a triple-magnification infrared imaging system, and to compensate for the change in refractive index according to temperature we measure the change in the lens focus according to temperature. The autofocus control function was implemented by using the measured movement amount, and we could obtain an image with satisfactory resolution performance over a wide range of operating temperatures.

Spray Characteristics According to the Variation of Design Parameters and Gas-liquid Momentum-flux Ratio in a Swirl-coaxial Injector Applied to Small Rocket Engine (소형로켓엔진에 적용된 스월 동축형 인젝터의 형상변수와 기체-액체 운동량 플럭스 비에 따른 분무특성)

  • Hyun Jong Ahn;Yun Hyeong Kang;Jeong Soo Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.27 no.1
    • /
    • pp.27-36
    • /
    • 2023
  • To understand the atomization performance in gas-liquid swirl-coaxial injector applied to a small rocket engine, a cold-flow test was performed by varying the design parameters and supply condition of propellants. As the swirl-chamber diameter and the angle of the convergent section, which are design parameters of injector increased, the spray performance of the injector improved by increasing the swirl strength. In addition, as the gas-liquid momentum-flux ratio increased, the gas flow separated some of the droplets from the liquid film, and a gas-droplet mixture core was formed in the center of the spray sheet.

Structural Design and Analysis for Duct Stand of Blowers (송풍기 덕트 스탠드의 구조 설계 및 해석)

  • Hyunbum Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.149-153
    • /
    • 2023
  • In this study, structural design and analysis of a duct stand for blowers were performed. This structure was an axial fan and blower for wind tunnel of the vehicle environmental test chamber. The design of the blower duct stand support structure was performed by investigation on various loads. Additionally, self-weight of the motor and weight of the duct were investigated and applied. The duct stand structure was designed by analyzing the load. The safety of the structural design results was evaluated through finite element analysis. Finally, the safety of the design result was verified.

Fabrication of Biomimetic MEMS Acoustic Sensor and Analysis of Its Frequency Characteristics (MEMS 기반 생체모사 음향센서 제작 및 주파수 특성 분석)

  • Hur, Shin;Jung, Young-Do;Lee, Young-Hwa;Song, Won-Joon;Kim, Wan-Doo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.522-528
    • /
    • 2011
  • Artificial basilar membranes made of PVDF(polyvinylidene fluoride) are manufactured using microfabrication processes. The mechanical behavior of PVDF artificial basilar membrane was measured to evaluate its performance as a mechanical frequency analyzer using scanning LDV(laser Doppler vibrometer). The experimental setup consists of the microfabricated artificial basilar membrane, a loud speaker connected to an amplifier for generating acoustic pressure of specific spectral pattern, and a scanning LDV with controlling unit for measuring the displacement of the membrane on the incoming acoustic stimulation. The microfabricated artificial basilar membrane was attached tightly upon a package containing a chamber which can be filled with silicone oil before placed on the experimental setup stage. The experiment results showed that the microfabricated artificial basilar membrane has a property as a mechanical frequency analyzer.

Characteristics Analysis of 2-pin Sensor Composited Fuel Heater using the Low Temperature Fluidity (저온유동성시험기를 이용한 2-핀용 센서통합연료히터의 특성연구)

  • Xiang, Zhao;Yoon, Dal-Hwan
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1230-1235
    • /
    • 2019
  • In this paper, we have developed sensor composited heater of 2-pin, and unified the fuel filter. In order to evaluate the performance of the 2-pin sensor composited fuel heater, we have make of the low temperature fluidity system. The one measure and analysis the electrical and oil flow quantity characteristics at an input and out port of 2-pin sensor composited fuel heater. Especially, in the characteristics verification elements of the proposed goods, we use the test chamber for the temperature variable and oil flow quantity test, and designed an embedded system for interfacing an engine. By interfacing both user and the system, it support an experimental and date gathering function in 2-pin sensor composited fuel filter. And then test the temperature, oil pressure, electrical characteristics and oil flow quantity in variable status from - 30 ℃ to + 80 ℃. These can help us to determine the quality and performance of elementary goods.

Study on Characteristics of Car Air-con Compressor Under Bench System Fuel Economy Simulation Condition (벤치 연비 모사 조건에서 차량용 에어컨 압축기의 특성에 관한 연구)

  • Yoo, Seong-Yeon;Kim, Young-Shin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.705-710
    • /
    • 2012
  • In this study, an experiment on an air conditioning test bench was performed to verify the possibility of fuel economy simulation for the SC03 mode, North America fuel economy certification mode with a/c on condition, one of the vehicle fuel economy evaluation modes. The air conditioning test bench used in this study had each chamber simulating the actual vehicle air conditioning system and the controlling temperature, humidity, and air flow velocity to reproduce environmental conditions. Reliable results were obtained about the compressor RPM and inlet air velocity in front of the condenser corresponding to vehicle speed and air velocity in front of the vehicle, respectively, in the simulation of the SC03 mode, previously performed in CWT, in an air conditioning test bench. It was also discovered that there was a distinct difference in the fuel economy depending on the difference in the compressor displacement in the simulation test of the SC03 mode in the air conditioning test bench under various displacement conditions of the compressor.

Measurement of Material Properties of Composites under High Temperature using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 이용한 고온용 복합재료의 물성 측정)

  • 강동훈;박상욱;김수현;홍창선;김천곤
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.41-47
    • /
    • 2003
  • Composites are widely used for aircraft, satellite and other structures due to its good mechanical and thermal characteristics such as low coefficient of thermal expansion(CTE), heat-resistance, high specific stiffness and specific strength. In order to use composites under condition of high temperature, however, material properties of composites at high temperatures must be measured and verified. In this paper, material properties of T700/Epoxy were measured through tension tests of composite specimens with an embedded FBG sensor in the thermal chamber at the temperatures of RT, $100^{\circ}$, $200^{\circ}$, $300^{\circ}$, $300^{\circ}$. Through the pre-test of an embedded optical fiber, we confirmed the embedding effects of an optical fiber on material properties of the composites. Two kinds of specimens of which stacking sequences are [0/{0}/0]$_{T}$. and [$90_2$/{0}/$90_2$]. were fabricated. From the experimental results, material property changes of composites were successfully shown according to temperatures and we confirmed that fiber Bragg grating sensor is very appropriate to strain measurement of composites under high temperature.

Development of a Physical Training Management Module Using Smart Devices (스마트기기를 이용한 운동량 관리모듈 개발)

  • Shin, Ki-Su;Jung, Hahmin;Kwon, Soon-Jae;Lee, Se-Han;Kim, Dong Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.6
    • /
    • pp.571-577
    • /
    • 2015
  • In the paper, we propose a method for developing a physical training management module which sends physical data to smart devices using an wireless module attached to physical appliances. In the proposed stick-type physical appliance, the physical amount of data measured from sensors inside the appliance is sent to a smart device via wireless communication. And then the smart device records the physical amount of data categorized in person-based data and shows useful information about the user's physical training on the dedicated display. For the performance evaluation, indoor environment and electro magnetic wave tests are taken from national specialized organizations, and their results was very efficient. The proposed physical training management module is highly extensible since it is easily applicable to other physical appliances and useful to both Android and iOS platforms.