Hadoop is composed with MapReduce programming model for distributed processing and HDFS distributed file system. Hadoop is suitable framework for big data processing, but processing of mass small files have many problems. The processing of mass small file in hadoop have problems to created one mapper per one file, and it have problems to needed many memory for store of meta information of file. This paper have comparison evaluation processing method of mass small file with various method in hadoop platform. The processing of general compression format is inadequate because of processing by one mapper regardless of data size. The processing of sequence and hadoop archive file is removed memory problem of namenode by compress and combine of small file. Hadoop archive file is faster then sequence file about combine time of small file. The processing using CombineFileInputFormat class is needed not combine of small file, and it have similar speed big data processing method.
In this paper, we studied the coding technique for flicker mitigation and BER performance improvement in visible light communication system. In order to increase the transmission speed of visible light communication, a multi-transmission multi-LED transmission system using a plurality of LEDs is being actively studied. However, when data is transmitted through N LEDs in a multi-LED visible light communication system using N LEDs, there is a continuous zero section in which 0 is transmitted simultaneously according to the data sequence, and since the transmission section of 1 is different, flickering Or, a phenomenon in which the dimming level changes occurs. The visible light communication system is a communication system that simultaneously performs communication and lighting functions. Therefore, transmission efficiency of communication and brightness of lighting must be considered at the same time. To solve this problem, we proposed a flicker reduction mapping that can alleviate flicker and dimming level problems, improve error detection and BER performance through coding mapping of each LED data sequence.
We propose a single Index approach for subsequence matching that supports moving average transform of arbitrary order in time-series databases. Using the single index approach, we can reduce both storage space overhead and index maintenance overhead. Moving average transform is known to reduce the effect of noise and has been used in many areas such as econometrics since it is useful in finding overall trends. However, the previous research results have a problem of occurring index overhead both in storage space and in update maintenance since tile methods build several indexes to support arbitrary orders. In this paper, we first propose the concept of poly-order moving average transform, which uses a set of order values rather than one order value, by extending the original definition of moving average transform. That is, the poly-order transform makes a set of transformed windows from each original window since it transforms each window not for just one order value but for a set of order values. We then present theorems to formally prove the correctness of the poly-order transform based subsequence matching methods. Moreover, we propose two different subsequence matching methods supporting moving average transform of arbitrary order by applying the poly-order transform to the previous subsequence matching methods. Experimental results show that, for all the cases, the proposed methods improve performance significantly over the sequential scan. For real stock data, the proposed methods improve average performance by 22.4${\~}$33.8 times over the sequential scan. And, when comparing with the cases of building each index for all moving average orders, the proposed methods reduce the storage space required for indexes significantly by sacrificing only a little performance degradation(when we use 7 orders, the methods reduce the space by up to 1/7.0 while the performance degradation is only $9\%{\~}42\%$ on the average). In addition to the superiority in performance, index space, and index maintenance, the proposed methods have an advantage of being generalized to many sorts of other transforms including moving average transform. Therefore, we believe that our work can be widely and practically used in many sort of transform based subsequence matching methods.
Smart phone users prefer fast reading and texting. Hence, users frequently use abbreviated sequences of words and phrases. Nowadays, abbreviations are widely used from chat terms to technical terms. Therefore, gathering abbreviations would be helpful to many services, including information retrieval, recommendation system, and so on. However, manually gathering abbreviations needs to much effort and cost. This is because new abbreviations are continuously generated whenever a new material such as a TV program or a phenomenon is made. Thus it is required to generate of abbreviations automatically. To generate Korean abbreviations, the existing methods use the rule-based approach. The rule-based approach has limitations, in that it is unable to generate irregular abbreviations. Another problem is to decide the correct abbreviation among candidate abbreviations generated rules. To address the limitations, we propose a method of generating Korean abbreviations automatically using sequence-to-sequence learning in this paper. The sequence-to-sequence learning can generate irregular abbreviation and does not lead to the problem of deciding correct abbreviation among candidate abbreviations. Accordingly, it is suitable for generating Korean abbreviations. To evaluate the proposed method, we use dataset of two type. As experimental results, we prove that our method is effective for irregular abbreviations.
Park Sanghyun;Lee Wook-jin;Lee ByungJeong;Kim Heechern;Wu Chisu
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.319-321
/
2005
항해는 웹 응용의 대표적인 행위 특성이다. 본 연구에서는 UML 2.0의 행위 다이어그램 메타 모델을 확장한 웹 응용 항해 모델을 제안한다. 본 항해 모델은 딜 판정 항해 모델과 데이터 전송 관점 항해 모델로 구성된다. 뷰 관점 항해 모델은 UML 상태 기계 다이어그램을 확장하여 사용자에게 표시되는 항해를 기술한다. 데이터 전송 관점 항해 모델은 데이터가 전송되는 항해를 나타내며 UML 시퀀스 다이어그램을 확장하여 표현한다. 두 항해 모델은 상호 보완적으로 작용하여 온전한 항해 문맥을 형성한다. 본 논문에서는 UML 2.0 메타 모델의 확장점과 항해 모델의 표기법을 제시하고, 사례 연구를 통하여 실제적인 항해 모델의 예를 보인다.
Proceedings of the Korea Information Processing Society Conference
/
2014.11a
/
pp.59-61
/
2014
유전체 연구를 위한 분석 작업은 표준유전체에 시퀀스 데이터를 정렬하는 과정을 필수적으로 요구한다. 정렬에는 single-end 또는 paired-end reads가 사용된다. Paired-end reads는 유전체 조각의 양쪽에서 시퀀싱 된 데이터로 좀 더 긴 길이에 대한 정보를 얻을 수 있어 많이 이용된다. 정렬 툴 자체적으로 paired-end reads를 다룰수 있으나, 병합툴을 활용하는 것이 더 좋은 결과를 보인다. 다섯 가지 병합툴 중에서 CASPER와 pear에서 정렬 이득이 가장 크게 나타난다.
Proceedings of the Korea Information Processing Society Conference
/
2013.05a
/
pp.894-897
/
2013
서열 정렬(sequence alignment)은 유전학(genomic)에서 널리 사용되는 도구 중 하나이다. 최근에는 차세대 시퀀싱 기술(NGS)이 발달함에 따라 데이터의 생산량이 크게 증가했고, 이에 따라 높은 처리량(throughput)을 가진 서열 정렬 알고리즘의 필요성이 증가하였다. 본 논문에서 제안하는 염기 서열 정렬 알고리즘은 시퀀스(sequence)데이터를 그래프 형태로 변형시킨 다음, 마이크로소프트사의 그래프 기반인 메모리(in-memory) 분산시스템(distributed system) 트리니티(Trinity)를 이용해 서열 정렬을 수행한다. 본 논문의 알고리즘은 트리니티 시스템에서 시뮬레이션 염기 데이터를 성공적으로 정렬하였으며, 슬레이브의 개수가 늘어날수록 빠른 속도를 나타내어 확장성(scalability)을 입증했다.
Proceedings of the Korea Information Processing Society Conference
/
2013.05a
/
pp.240-243
/
2013
본 논문에서는 로봇 제어 목적의 응용을 위해 SVM 알고리즘과 HMM 알고리즘을 근간으로 하는 효과적인 뇌파 데이터 자동 분류 방법을 제안한다. Emotive Epoc 헤드셋 뇌파 측정 장비를 이용하여 뇌파 데이터를 수집하고, 수집된 뇌파 데이터로부터 FFT알고리즘을 이용하여 특징 추출을 수행한다. 그리고 SVM 알고리즘을 이용한 1단계 분류 방법과 SVM 알고리즘의 분류 결과를 다시 입력 시퀀스로 삼아 시계열 학습 알고리즘인 HMM에 적용하는 2단계 분류 방법의 실험 결과를 소개한다.
Proceedings of the Korea Information Processing Society Conference
/
2013.11a
/
pp.1328-1331
/
2013
본 논문에서는 스마트폰 내장 가속도 센서를 이용한 2단계 행위 인식 시스템을 제안한다. 제안하는 행위 인식 시스템에서는 행위 별 시간에 따른 가속도 센서 데이터의 변화 패턴을 충분히 반영하기 위해, 1단계 분류에서는 결정트리 모델 학습과 분류를 수행하고, 2단계 분류에서는 1단계 분류 결과들의 시퀀스를 이용하여 HMM모델 학습과 분류를 수행하였다. 또한, 본 논문에서는 특정 사용자나 스마트폰의 특정 위치, 방향 변화에도 견고한 행위 인식을 위하여, 동일한 행위에 대해 사용자와 스마트폰의 위치, 방향을 변경하면서 다양한 훈련 데이터를 수집하였다. 6720개의 가속도 센서 데이터를 이용하여 총 6가지 실내 행위들을 인식하기 위한 실험들을 수행하였고, 그 결과 높은 인식 성능을 확인 할 수 있었다.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.319-319
/
2020
최근 데이터 과학의 획기적인 발전 덕분에 딥러닝 (Deep Learning) 알고리즘이 개발되어 다양한 분야에 널리 적용되고 있다. 본 연구에서는 인공신경망 중 하나인 LSTM(Long-Short Term Memory) 네트워크를 사용하여 댐 유입량을 예측하였다. 구체적인 내용으로, (1) LSTM에 필요한 입력 데이터를 효율적으로 사전 처리하는 방법, (2) LSTM의 하이퍼 매개변수를 결정하는 방법 및 (3) 다양한 손실 함수(Loss function)를 선택하고 그 영향을 평가하는 방법 등을 다루었다. 제안된 LSTM 모델은 강우량(R), 댐유입량(Q) 기온(T), 기저유량(BF) 등을 포함한 다양한 입력 변수들의 함수로 가정하였으며, CCF(Cross Correlations), ACF(Autocorrelations) 및 PACF(Partial Autocorrelations) 등의 기법을 사용하여 입력 변수를 결정하였다. 다양한 sequence length를 갖는 (즉 t, t-1, … t-n의 시간 지연을 갖는) 입력 변수를 적용하여 데이터 학습에 최적의 시퀀스 길이를 결정하였다. LSTM 네트워크 모델을 적용하여 2014년부터 2020년까지 한강 유역 9개의 댐 유입량을 추정하였다. 본 연구로부터 댐 유입량을 예측하는 것은 홍수 및 가뭄 통제를 위한 필수 요건들 중 하나이며 수자원 계획 및 관리에 도움이 될 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.