Browse > Article

A Single Index Approach for Time-Series Subsequence Matching that Supports Moving Average Transform of Arbitrary Order  

Moon Yang-Sae (강원대학교 컴퓨터과학과)
Kim Jinho (강원대학교 컴퓨터과학과)
Abstract
We propose a single Index approach for subsequence matching that supports moving average transform of arbitrary order in time-series databases. Using the single index approach, we can reduce both storage space overhead and index maintenance overhead. Moving average transform is known to reduce the effect of noise and has been used in many areas such as econometrics since it is useful in finding overall trends. However, the previous research results have a problem of occurring index overhead both in storage space and in update maintenance since tile methods build several indexes to support arbitrary orders. In this paper, we first propose the concept of poly-order moving average transform, which uses a set of order values rather than one order value, by extending the original definition of moving average transform. That is, the poly-order transform makes a set of transformed windows from each original window since it transforms each window not for just one order value but for a set of order values. We then present theorems to formally prove the correctness of the poly-order transform based subsequence matching methods. Moreover, we propose two different subsequence matching methods supporting moving average transform of arbitrary order by applying the poly-order transform to the previous subsequence matching methods. Experimental results show that, for all the cases, the proposed methods improve performance significantly over the sequential scan. For real stock data, the proposed methods improve average performance by 22.4${\~}$33.8 times over the sequential scan. And, when comparing with the cases of building each index for all moving average orders, the proposed methods reduce the storage space required for indexes significantly by sacrificing only a little performance degradation(when we use 7 orders, the methods reduce the space by up to 1/7.0 while the performance degradation is only $9\%{\~}42\%$ on the average). In addition to the superiority in performance, index space, and index maintenance, the proposed methods have an advantage of being generalized to many sorts of other transforms including moving average transform. Therefore, we believe that our work can be widely and practically used in many sort of transform based subsequence matching methods.
Keywords
Data Mining; Time Series Data; Subsequence Matching; Moving Average Transform;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Berchtold, S., Bohm, C., and Kriegel, H.-P., 'The Pyramid-Technique: Towards Breaking the Curse of Dimensionality,' In Proc. Int'l Conf. on Management of Data, ACM SIGMOD, Seattle, Washington, pp. 142-153, June 1998   DOI
2 Oppenheim, A. V. and Schafer, R. W., Digital Signal Processing, Prentice-Hall, 1975
3 Yi, B.-K., Jagadish, H. V., and Faloutsos, C., 'Efficient Retrieval of Similar Time Sequences Under Time Warping,' In Proc. the 14th Int'l Conf. on Data Engineering(ICDE), IEEE, Orlando, Florida, pp. 201-208, Feb. 1998
4 Chatfield, C., The Analysis of Time Series: An Introduction, 3rd Ed., Chapman and Hall, 1984
5 Kendall, M., Time-Series, 2nd Ed., Charles Griffin and Company, 1976
6 Moon, Y.-S., Whang, K.-Y., and Loh, W.-K., 'Duality-Based Subsequence Matching in Time-Series Databases,' In Proc. the 17th Int'l Conf. on Data Engineering (ICDE), IEEE, Heidelberg, Germany, pp. 263-272, April 2001   DOI
7 Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B., 'The R*-tree: An Efficient and Robust Access Method for Points and Rectangles,' In Proc. Int'l Conf. on Management of Data, ACM SIGMOD, Atlantic City, New Jersey, pp. 322-331, May 1990   DOI
8 Rafiei, D., 'On Similarity-Based Queries for Time Series Data,' In Proc. the 15th Int'l Conf. on Data Engineering(ICDE), IEEE, Sydney, Australia, pp. 410-417, Feb. 1999
9 Kim, S.-W., Park, S, and Chu, W. W., 'Efficient Processing of Similarity Search Under Time Warping in Sequence Databases: An Index-based Approach,' Information Systems, Vol. 29, No. 5, pp. 405-420, July 2004   DOI   ScienceOn
10 Park, S., Chu, W. W., Yoon, J., and Won, J., 'Similarity Search of Time-Warped Subsequences via a Suffix Tree,' Information Systems, Vol. 28, No. 7, pp. 867-883, Oct. 2003   DOI   ScienceOn
11 Rafiei, D. and Mendelzon, A. O., 'Querying Time Series Data Based on Similarity,' IEEE Trans. on Knowledge and Data Engineering, Vol. 12, No. 5, pp. 675-693, Sept./Oct. 2000   DOI   ScienceOn
12 Loh, W.-K., Kim, S.-W., and Whang, K.-Y., 'A Subsequence Matching Algorithm that Supports Normalization Transform in Time-Series Databases,' Data Mining and Knowledge Discovery, Vol. 9, No. 1, pp. 5-28, July 2004   DOI
13 Agrawal, R., Lin, K.-I., Sawhney, H. S., and Shim, K., 'Fast Similarity Search in the Presence of Noise, Scaling, and Translation in Time-Series Databases,' In Proc. the 21st Int'l Conf. on Very Large Data Bases, Zurich, Switzerland, pp. 490-501, Sept. 1995
14 Chu, K. W. and Wong, M. H., 'Fast Time-Series Searching with Scaling and Shifting,' In Proc. the 15th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Philadelphia, Pennsylvania, pp. 237-248, June 1999   DOI
15 Wu, H., Salzberg, B., and Zhang, D., 'Online Event-driven Subsequence Matching Over Financial Data Streams,' In Proc. of Int'l Conf. on Management of Data, ACM SIGMOD, Paris, France, pp. 23-34, June 2004   DOI
16 Moon, Y.-S., Whang, K.-Y., and Han, W.-S., 'General Match: A Subsequence Matching Method in Time-Series Databases Based on Generalized Windows,' In Proc. Int'l Conf. on Management of Data, ACM SIGMOD, Madison, Wisconsin, pp. 382-393, June 2002   DOI
17 Chan, K.-P., Fu, A. W.-C., and Yu, C. T., 'Haar Wavelets for Efficient Similarity Search of Time-Series: With and Without Time Warping,' IEEE Trans. on Knowledge and Data Engineering, Vol. 15, No. 3, pp. 686-705, Jan./Feb. 2003   DOI   ScienceOn
18 Loh, W.-K., Kim, S.-W., and Whang, K.-Y., 'Index Interpolation: A Subsequence Matching Algorithm Supporting Moving Average Transform of Arbitrary Order in Time-Series Databases,' IEICE Transactions on Information and Systems, Vol. E84-D, No. 1, pp. 76-86, 2000
19 Faloutsos, C., Ranganathan, M., and Manolopoulos, Y., 'Fast Subsequence Matching in Time-Series Databases,' In Proc. Int'l Conf. on Management of Data, ACM SIGMOD, Minneapolis, Minnesota, pp. 419-429, May 1994   DOI
20 Agrawal, R., Faloutsos, C., and Swami, A., 'Efficient Similarity Search in Sequence Databases,' In Proc. the 4th Int'l Conf. on Foundations of Data Organization and Algorithms, Chicago, Illinois, pp. 69-84, Oct. 1993