• 제목/요약/키워드: 시스템 GMM

검색결과 130건 처리시간 0.029초

얼굴인증 방법들의 조명변화에 대한 견인성 비교 연구 (Study On The Robustness Of Face Authentication Methods Under illumination Changes)

  • 고대영;김진영;나승유
    • 정보처리학회논문지B
    • /
    • 제12B권1호
    • /
    • pp.9-16
    • /
    • 2005
  • 본 논문은 얼굴인증 시스템 구현과 조명변화에 견인한 얼굴인증 방법들에 관한 연구에 초점을 둔다. 얼굴인증 시스템 구현을 위한 방법으로 PCA(Principal Component Analysis), GMM(Gaussian Mixture Models), 1차원 HMM(1 Dimensional Hidden Markov Models), 준 2차원 HMM(Pseudo 2 Dimensional Hidden Markov Models) 방법을 이용한다. 네 가지 다른 얼굴인증 방법들의 조명변화에 대한 성능비교 실험을 수행한다. 조명변화실험을 위해 얼굴이미지의 왼쪽에서 오른쪽으로 인공적인 조명효과(${\delta}=0,40,60,80$)를 준다. 얼굴특징벡터는 얼굴이미지에서 분할한 각 블록에 대한 2D DCT(2 Dimensional Discrete Cosine Transform) 계수를 이용하고 실험은 ORL(Olivetti Research Laboratory) 얼굴데이터베이스를 사용한다. 실험결과 모든 경우 조명변화 값이 커질수록 성능저하가 발생한다. 또한 조명변화가 없는 경우(${\delta}=0$) 준 2차원 HMM이 $2.54{\%}$, 1차원 HMM이 $3.18{\%}$, PCA가 $11.7{\%}$, GMM이 $13.38{\%}$의 EER(Equal Error Rate) 성능을 나타낸다. 조명변화가 없는 경우(${\delta}=0$) 1차원 HMM 방법이 PCA 방법보다 좋은 성능을 나타내지만 조명변화 ${\delta}{\geq}40$인 때에는 반대로 PCA 방법이 더 좋은 성능을 나타낸다. 마지막으로 준 2차원 HMM의 경우 조명변화에 관계없이 가장 좋은 EER성능을 나타낸다.

음성의 피치 파라메터를 사용한 감정 인식 (Emotion Recognition using Pitch Parameters of Speech)

  • 이규현;김원구
    • 한국지능시스템학회논문지
    • /
    • 제25권3호
    • /
    • pp.272-278
    • /
    • 2015
  • 본 논문에서는 음성신호 피치 정보를 이용한 감정 인식 시스템 개발을 목표로 피치 정보로부터 다양한 파라메터 추출방법을 연구하였다. 이를 위하여 다양한 감정이 포함된 한국어 음성 데이터베이스를 이용하여 피치의 통계적인 정보와 수치해석 기법을 사용한 피치 파라메터를 생성하였다. 이러한 파라메터들은 GMM(Gaussian Mixture Model) 기반의 감정 인식 시스템을 구현하여 각 파라메터의 성능을 비교되었다. 또한 순차특징선택 방법을 사용하여 최고의 감정 인식 성능을 나타내는 피치 파라메터들을 선정하였다. 4개의 감정을 구별하는 실험 결과에서 총 56개의 파라메터중에서 15개를 조합하였을 때 63.5%의 인식 성능을 나타내었다. 또한 감정 검출 여부를 나타내는 실험에서는 14개의 파라메터를 조합하였을 때 80.3%의 인식 성능을 나타내었다.

음향학적 및 언어적 탐색을 이용한 어휘 인식 최적화 (The Vocabulary Recognition Optimize using Acoustic and Lexical Search)

  • 안찬식;오상엽
    • 한국멀티미디어학회논문지
    • /
    • 제13권4호
    • /
    • pp.496-503
    • /
    • 2010
  • 어휘인식 시스템은 스탠드 얼론(Standalone)으로 개발되어 지고 있으며 휴대용 단말기에서 사용하였을 경우 메모리 공간의 제약과 오디오 압축으로 인해 인식률이 낮게 나타난다. 본 연구에서는 휴대용 단말기의 성능과 인식률 향상을 위하여 음향학적 탐색과 언어적 탐색을 분리하여 어휘 인식 속도를 개선한 시스템을 제안하였다. 음향학적 탐색은 휴대용 단말기에서 수행하고 보다 복잡한 언어적 탐색은 서버에서 처리하는 시스템으로 음성신호로부터 특징벡터를 추출하여 GMM을 이용한 음소인식을 수행하고, 인식된 음소 열을 서버로 전송하여 렉시컬 트리 탐색 알고리즘을 사용하여 언어적 탐색 단계에서 어휘 인식을 수행하였다. 시스템 성능 평가 결과 어휘 종속 인식률은 98.01%, 어휘 독립 인식률은 97.71%의 인식률을 나타냈으며 인식속도는 1.58초로 나타내었다.

CTC를 이용한 LSTM RNN 기반 한국어 음성인식 시스템 (LSTM RNN-based Korean Speech Recognition System Using CTC)

  • 이동현;임민규;박호성;김지환
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권1호
    • /
    • pp.93-99
    • /
    • 2017
  • Long Short Term Memory (LSTM) Recurrent Neural Network (RNN)를 이용한 hybrid 방법은 음성 인식률을 크게 향상시켰다. Hybrid 방법에 기반한 음향모델을 학습하기 위해서는 Gaussian Mixture Model (GMM)-Hidden Markov Model (HMM)로부터 forced align된 HMM state sequence가 필요하다. 그러나, GMM-HMM을 학습하기 위해서 많은 연산 시간이 요구되고 있다. 본 논문에서는 학습 속도를 향상하기 위해, LSTM RNN 기반 한국어 음성인식을 위한 end-to-end 방법을 제안한다. 이를 구현하기 위해, Connectionist Temporal Classification (CTC) 알고리즘을 제안한다. 제안하는 방법은 기존의 방법과 비슷한 인식률을 보였지만, 학습 속도는 1.27 배 더 빨라진 성능을 보였다.

음악 장르 분류를 이용한 자동차 오디오 시스템에서의 이퀄라이저 자동 조절 방식 (Automatic Equalizer Control Method Using Music Genre Classification in Automobile Audio System)

  • 김형국;남상순
    • 한국ITS학회 논문지
    • /
    • 제8권4호
    • /
    • pp.33-38
    • /
    • 2009
  • 본 논문은 자동차 오디오 시스템에 내장된 라디오에서 실시간으로 재생되는 연속적인 오디오 신호로부터 음악 신호를 선별하고, 해당 음악에 대한 실시간 음악장르 분류를 통해 자동으로 이퀄라이저를 조절하는 방식을 제안한다. 제안된 방식에서는 음악분류 정확도를 높이고 실시간 신호처리를 실행하기 위해 연속적인 오디오 신호로부터 추출한 음색 특징 벡터와 리듬 특징 벡터를 GMM (Gaussian mixture model) 분류 방식에 적용하여 음악 분류를 수행한다. 제안된 방식은 카오디오 시스템의 라디오로부터 출력된 오디오 신호로부터 분할된 다양한 오디오 구간을 5가지 음악장르로 분류하여 음악 장르 분류 성능을 측정하였다.

  • PDF

무역자유화의 동태적 누적효과: 한국 제조업 (Cumulative Effects of Trade Liberalization : The Case of Korean Manufacturing)

  • 박순찬
    • 경제분석
    • /
    • 제17권4호
    • /
    • pp.30-51
    • /
    • 2011
  • 무역자유화의 파급효과를 분석한 선행 연구의 대부분은 어떤 시점에 이루어진 무역자 유화가 해당연도 또는 그 다음연도와 같은 특정시점의 경제성과(economic performance)에만 영향을 미치는 것처럼 암묵적으로 가정하기 때문에 본질적으로 정태분석의 한계를 벗어나지 못한다. 이러한 선행연구와는 달리 본 연구는 무역자유화가 경제성과에 지속적으로 영향을 미칠 수 있는 동태적 실증분석모형을 설정하여 무역자유화의 누적효과(cumulative effects)를 분석한다. 또한 무역자유화의 파급효과에 대한 실증분석에서 제기되는 내생성(endogeneity)의 문제를 통제하기 위해 수준방정식과 차분방정식을 동시에 이용하는 동태적 패널 데이터 분석방법인 시스템 일반화적률법(system GMM)을 적용한다. 본 연구는 1988-2005년 기간의 한국 제조업을 대상으로 무역자유화의 정태 효과 및 동태적 누적효과를 추정하였는데, 무역자유화의 파급효과는 상당 기간 동안 지속되고, 동태적 누적효과는 정태효과에 비해 훨씬 더 크게 나타났다.

과학수사를 위한 한국인 음성 특화 자동화자식별시스템 (Forensic Automatic Speaker Identification System for Korean Speakers)

  • 김경화;소병민;유하진
    • 말소리와 음성과학
    • /
    • 제4권3호
    • /
    • pp.95-101
    • /
    • 2012
  • In this paper, we introduce the automatic speaker identification system 'SPO(Supreme Prosecutors Office) Verifier'. SPO Verifier is a GMM(Gaussian mixture model)-UBM(universal background model) based automatic speaker recognition system and has been developed using Korean speakers' utterances. This system uses a channel compensation algorithm to compensate recording device characteristics. The system can give the users the ability to manage reference models with utterances from various environments to get more accurate recognition results. To evaluate the performance of SPO Verifier on Korean speakers, we compared this system with one of the most widely used commercial systems in the forensic field. The results showed that SPO Verifier shows lower EER(equal error rate) than that of the commercial system.

소셜 TV적용을 위한 사용자 반응 사운드 인식방식 비교 (Comparison of User's Reaction Sound Recognition for Social TV)

  • 류상현;김형국
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2013년도 하계학술대회
    • /
    • pp.155-156
    • /
    • 2013
  • 소셜 TV 사용 시, 사용자들은 TV를 시청하면서 타 사용자와의 소통을 위해 리모컨을 이용해서 텍스트를 작성해야하는 불편함을 가지고 있다. 본 논문에서는 소셜 TV의 이러한 불편함을 해결하기 위해 사용자 반응 사운드를 자동으로 인식하여 상대방에게 이모티콘을 전달하기 위한 시스템을 제안하며, 사용자 반응 사운드 인식에 사용되는 분류방식들을 비교한다. 사용자 반응 사운드 인식을 위해 사용되는 분류 방식들 중에서, Gaussian Mixture Model(GMM), Gaussian Mixture Model - Universal Background Model(GMM-UBM), Hidden Markov Model(HMM), Support Vector Machine(SVM)의 성능을 비교하였다. 각 분류기의 성능을 비교하기 위하여 MFCC 특징값을 각 분류기에 적용하여 사용자 반응 사운드 인식에 가장 최적화된 분류기를 선택하였다.

  • PDF

관측신뢰도 적용에 의한 투표기법 기반의 화자인식시스템의 성능향상 (Performance Improvement of Voting-based Speaker Identification System by using the Observation Confidence)

  • 최홍섭
    • 음성과학
    • /
    • 제15권2호
    • /
    • pp.79-88
    • /
    • 2008
  • Recently demands for the speech technology-based products targeted for the mobile terminals such as cellular phones and PDA are rapidly increasing. And voting-based speaker identification algorithm is known to have a good performance in the mobile environment, since it works well with small amount of speaker training data. In this paper, we proposed a method to improve the performance of this voting based speaker identification system by using the observation confidence value which is derived from the function of SNR each frame. The proposed method is evaluated with ETRI cellular phone DB which is made for the speaker recognition task. The experimental results show that the proposed method has better performance of 2-3% identification rate than the conventional GMM method.

  • PDF

유성음의 정보를 이용한 화자식별에 관한 연구 (On the speaker identification using the informations contained in the voiced intervals)

  • 오창환;박대성;최홍섭
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2000년도 학술발표대회 논문집 제19권 2호
    • /
    • pp.175-178
    • /
    • 2000
  • GMM을 기반으로 하는 화자식별 시스템은 입력음성의 길이의 장단에 의해서 인식률에 차이가 생긴다. 이는 가우시안 모델의 파라미터를 추정할 때, 않은 데이터를 사용할수록 추정이 정확해지기 때문이다. 따라서 화자식별에 사용하는 입력데이터는 화자가 발성한 모든 음성신호에서 잡음구간만을 제거한 유,무성음을 이용하게 된다. 그러나 이 경우 데이터의 양이 많아져서 실시간 처리에 어려움이 있겠다. 본 논문에서는 전체 음성구간을 이용하는 대신 유성음 구간만을 추출하여 이 구간의 켑스트럼과 피치 값들을 특징파라미터로 이용하여 화자식별에 이용하였다. 특히 피치성분은 일반적으로 통신채널과 핸드셋의 영향에 상대적으로 강한 장점이 있다. 실험을 위하여 20대의 남성 및 여성화자 40명으로부터 얻은 음성데이터에서 유성음구간을 추출하여 GMM을 이용한 문장독립 화자식별 실험을 하였으며, 실험결과 스펙트럼정보와 함께 피치 정보가 화자식별에 유용하게 사용될 수 있음을 알 수 있었다

  • PDF