• Title/Summary/Keyword: 시스템소재

Search Result 1,198, Processing Time 0.031 seconds

The Effect of Job Stress and Burnout by Job Environment of Care-givers on Job Satisfaction (요양보호사의 직무환경에 따른 직무스트레스와 소진이 직무만족에 미치는 영향)

  • Jeong, Yun-Mo;Kang, Young-Sig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3688-3699
    • /
    • 2010
  • The purpose of this study is to understand attributes, stress and burnout related to job environment of healthcare facilities workers for the aged, care-givers, analyze the effect of these factors on job satisfaction, and improve their organizational task to help advance the quality of life and the healthcare facilities for the aged. A survey was made on 129 care-givers working in the healthcare facilities for the aged(care facilities, in-home facilities for the aged) located in Jeonbuk Gunsan area. This study showed that sub-factors of care-givers' job environment such as human environment, compensation system and job expertise have a significant effect on the job burnout, stress and satisfaction. This means that a well-organized compensation system, which is proportionate to the job expertise and ability for human environment, and achievement of innovative thinking, will make a positive relationship, reduce the job burnout and stress, and improve the job satisfaction at the same time. Compared to the rapid increase of old aged patients for long-term care and care-givers' real role and job in the facilities, the job specialization has to be guaranteed to improve job environment of care-givers as various beneficial workers for welfare - professional workers - and the compensation system needs to be properly systematized according to their job capacity. Consequently, the production and participation of professionals with high self-esteem may raise organizational commitment through the maximization of job satisfaction by the participation and devotion to the organization of more professionals by removing factors, which can reduce the frequent job burn-out and stress of care-givers.

Development of a cavity pressure measuring device and estimation of viscosity functions of various polymer composites (사출성형 금형 캐비티 내압 측정장치 개발 및 이를 이용한 새로운 복합재료의 점도 측정)

  • Kim, Yong-Hyeon;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.877-887
    • /
    • 2015
  • We have proposed a new method for estimating the viscosity of the composite. In this paper, we have developed a device for measuring the injection mold cavity pressure. This makes it possible to verify the accuracy of the viscosity in CAE D/B in real time by measuring the melt pressure in the mold, and comparing this with the simulated pressure from the CAE analysis. Materials used in this study is a PP(Polypropylene), PP/LGF30%(Polypropylene/long glass fiber 50% composite) and PA66/LGF50%(Polyamide 6,6/long glass fiber 50% composite). The viscosity data for PP and PP long fiber composite have already been built, but the one for PA66 long-fiber composite does not exist because it is a newly developed material. Thus we obtained the viscosity curve of PA66/LGF50% by this system. Then, the viscosity curves from conventional viscometer were also compared with the viscosity obtained by the our method. And, we proved the accuracy of the CAE data of PP. In case of PP/LGF50% which is highly viscous and complex material, we improved the existing CAE data.because there was a difference between the measuring data and the CAE data.

Indoor Rearing Method of Diving Beetles: Cybister japonicus, Cybister tripunctatus orientalis, Cybister brevis (물방개류 실내 사육법)

  • Kim, NamJung;Hong, Seong-Jin;Kim, Seong-Hyun;Park, Hae-Chul
    • Journal of Sericultural and Entomological Science
    • /
    • v.50 no.1
    • /
    • pp.27-32
    • /
    • 2012
  • The aim of this study is to develop indoor-rearing methods of the diving beetles. In nature, both the adult diving beetle and its larvae are voracious aquatic predators. The larvae beetles hunt relatively bigger size of tadpoles and small fish for food source. However, due to difficulties of the food supplement for rearing diving beetles at indoor-condition further motivated us to develop new artificial food. Three separate experiments were performed. In the first experiment, adult beetles were provided with one of the several food choice treatments to self-compose their preferred foods that are affordable on the market at lower price. The second experiment was also to develop artificial diet that is possible for rearing larvae beetle under indoor condition. The larvae beetles were restricted to raw squid, artificial food source and mosquito larvae as a control at the first stadium and small fish and raw squid during second to third stadium duration. According to our result, adult beetles selected a food that made of boiled squid and dead small fish while, the young larvae consumed small fish, mosquito larvae and raw squid. Although, the larval food restriction on law squid caused noticeable decrease in survival, the result still supported the possible survival rate of keeping larvae at indoor condition. Moreover, pupation rate experiments, in which groups of larvae were placed at different mats, natural soil and fermented sawdust, showed that 80% of diving beetles pupated on the sawdust. This result indicates that female beetle preferentially selected to oviposit along soft and moist area.

Deterioration Degree and Material Research of Metal Archival Objects (금속류 행정박물의 손상도 및 재질 연구)

  • Park, Hyung-Ho;Cho, Nam-Chul;Na, Mi-Sun
    • Journal of Conservation Science
    • /
    • v.26 no.1
    • /
    • pp.33-41
    • /
    • 2010
  • The archival objects are tangible evidence reflecting public work as forming archives which are administrative, historic, symbolic, cultural and artistic value. They are produced from the various countries so that they have different material and manufacture techniques. However there are difficulties in conservation and management because the material investigation and conservation management system are not established. Therefore this research presents fundamental data for the efficient conservation management by material investigation and condition check metal archival objects. Among the public official presents made of metal, 12 pieces which are discoloration, oxidation, loss or crack are chosen for this research. In order to examine extensive condition of metal archival objects, the condition check card used from the domestic museum and the national museum in Japan are collected and then the new check card is produced. X-ray is used to know the making technique, binding means between different material. Portable-XRF is also used for the chemical composition analysis of metal archival objects, and then classifying respectively according to their material. As a result of condition check, it is possible to investgate the appearance character, deteriorated parts and weak parts of structure. Also P-XRF could find out the composition of metal archival objects which is different from existing condition check card. Therefore the research results can be used as fundamental data for further conservation and management as well as long-term conservation.

A study on the HTS-NAA/γ-spectrometry for the analysis of alpha-particle emitting impurities in silica (고순도 실리카중 알파방출 불순물 분석을 위한 HTS-NAA/γ-spectrometry 연구)

  • Lee, Kil Yong;Yoon, Yoon Yeol;Cho, Soo Young;Yang, Myung Kwon;Shim, Sang Kwon;Kim, Yongje;Chung, Yong Sam
    • Analytical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.5-12
    • /
    • 2005
  • It has been established that soft error of high precision electronic circuits can be induced by alpha particles emitted from the naturally occurring radioactive impurities such as U, and Th. As the electronic circuits have recently become lower dimension and higher density, these alpha-particle emitting radioactive impurities have to be strictly controlled. The aim of this study is to develop of NAA (Neutron Activation Analysis) and gamma-spectrometry to improve the analytical sensitivity and precision of U and Th. A new NAA method has been established using the HTS (Hydrulic transfer system) irradiation facility which has been used to produce radioisotopes for industries and medicines instead of the PTS (pneumatic transfer system) irradiation facility which has been used in general NAA. When the ultratrace impurities have to be analyzed by NAA, background gamma-ray spectra induced from $^{222}Rn$ and its progenies in air is serious problem. This unstable background has been eliminated or stabilized by the use of a nitrogen purging system. Ultra trace amounts of U (0.1 ng/g) and Th (0.01 ng/g) in high purity silica used for EMC could be analyzed by the use of HTS-NAA and low background gamma-spectrometry.

Review of Failure Mechanisms on the Semiconductor Devices under Electromagnetic Pulses (고출력전자기파에 의한 반도체부품의 고장메커니즘 고찰)

  • Kim, Dongshin;Koo, Yong-Sung;Kim, Ju-Hee;Kang, Soyeon;Oh, Wonwook;Chan, Sung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.37-43
    • /
    • 2017
  • This review investigates the basic principle of physical interactions and failure mechanisms introduced in the materials and inner parts of semiconducting components under electromagnetic pulses (EMPs). The transfer process of EMPs at the semiconducting component level can be explained based on three layer structures (air, dielectric, and conductor layers). The theoretically absorbed energy can be predicted by the complex reflection coefficient. The main failure mechanisms of semiconductor components are also described based on the Joule heating energy generated by the coupling between materials and the applied EMPs. Breakdown of the P-N junction, burnout of the circuit pattern in the semiconductor chip, and damage to connecting wires between the lead frame and semiconducting chips can result from dielectric heating and eddy current loss due to electric and magnetic fields. To summarize, the EMPs transferred to the semiconductor components interact with the chip material in a semiconductor, and dipolar polarization and ionic conduction happen at the same time. Destruction of the P-N junction can result from excessive reverse voltage. Further EMP research at the semiconducting component level is needed to improve the reliability and susceptibility of electric and electronic systems.

Characterization of PET films coated with organic-inorganic hybrid coating system containing surface modified zirconia (표면 개질된 지르코니아를 함유한 유-무기 하이브리드 코팅액으로 도포된 PET 필름의 특성)

  • Lee, Soo;Kim, Sang Yup;Kim, Young Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.595-605
    • /
    • 2018
  • In recent years, researches on organic-inorganic coating films have conducted a nanocomposite system composed of organic resin matrices having excellent flexibility and chemical stability and inorganic materials having excellent mechanical properties. The o-phenylphenoxyethyl acrylate (OPPEA) used as the acrylate monomer has a high refractive index of 1.58, and the bisphenol A ethoxylate diacrylate (BAEDA) has a low refractive index but improves the chemical stability of the organic resin. In addition, zirconia used as an inorganic material exhibits excellent durability and optical properties. In this study, the BAEDA contents in acrylate monomer were controlled to produce a film with suitable optical transparency. And optimum conditions were established by comparing the changes in surface properties of PET films detected with pencil hardness tester, Abbe's refractometer, and UV-vis spectrophotometer. The hydrophobicity and the dispersibility of zirconia in acrylate monomer were much improved after modification with ${\gamma}$-methacryloxypropyltrimethoxysilane (MPS), which is a silane coupling agent. And the existence of ester C=O bond peak at $1716cm^{-1}$ introduced by MPS through FT-IR ATR spectrophotometer confirmed the completion of surface modification of zirconia with MPS. In addition, the presence of silicon atom on the surface modified zirconia was also proved using X-ray fluorescence spectrometer. When the photocurable hybrid coating was prepared by introducing chemically modified zirconia into acrylate monomer, the refractive index of this coated PET film was improved by 1.2%, compared to the only acrylate coated PET film. The homogeneous distribution of zirconia in acrylate coating layer on PET film was also identified through SEM/EDS mapping analysis technique.

The Research of Developing Meta-Evaluation Standards of the University Reform Evaluation : in respect of evaluation human resource development (대학 구조개혁평가에 대한 메타평가 준거 개발 연구 : 인적자원개발 관점의 적용)

  • Lee, Tae-Hee;Kim, Jong-In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.649-662
    • /
    • 2017
  • Since 1980, the number of universities have increased dramatically. However, compared to the quantitative growth, the lack of qualitative growth has often been criticized. Students entering university are estimated to decrease by half in 2025 compared to 2014. In swift response to challenges with decreasing student enrollment, the first University Reform Evaluation (URE) for innovating universities, was conducted and resulted in controversy. Opposition is based on distrust of the overall system, questioning the reliability of the evaluation process utilized for the URE evaluation index. Meta-evaluation is required to improve the quality of evaluation, and standards developed prior to conducting the URE. Therefore, an interdisciplinary approach is necessary for the evaluation of human resource development. This research uses the interdisciplinary approach from the human resources development point of view in attempting to develop meta-evaluation criteria which will enable effective evaluation and analysis of URE. The meta-evaluation standard features the creation of the ERPOU model, by conducting literature review, and considers data from expert symposiums, and surveys. The ERPOU model consists of 5 evaluation fields, 21 evaluation categories, and 42 evaluation standards.

A Study on the Anti-Reflection Coating Effects of Polymer Eyeglasses Lens (폴리머 안경렌즈의 반사방지 코팅효과 연구)

  • Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.216-221
    • /
    • 2017
  • Reducing optical reflection in the visible light range, in order to increase the share of transmitted light and avoid the formation of ghost images in imaging, is important for polymer lens applications. In this study, polymer lenses with refractive indices of n=1.56, 1.60, and 1.67 were fabricated by the injection-molding method with a polymer lens monomer, dibutyltin dichloride as the catalyst and an alkyl phosphoric ester as the release agent. To investigate their anti-reflection (AR) effects, various AR coating structures, viz. a multi-layer AR coating structure, tri-layer AR coating structure with a discrete approximation Gaussian gradient-index profile, and tri-layer AR coating structure with a quarter-wavelength approximation, were designed and coated on the polymer lens by an E-beam evaporation system. The optical properties of the polymer lenses were characterized by UV-visible spectrometry. The material properties of the thin films, refractive index and surface roughness, were analyzed by ellipsometry and AFM, respectively. The most effective AR coating structure of the polymer lens with low refractive index, n=1.56, was the both side coating of multi-layer AR coating structure. However, both side coating of the tri-layered discrete approximation Gaussian gradient-index profile AR coating structure gave comparable results to the both side coating of the multi-layer AR coating structure for the polymer lens with a high refractive index of n=1.67.

Assessment of the Potential Environmental Impact of Smart Phone using LCA Methodology (LCA 기법을 활용한 스마트폰의 잠재적 환경영향평가)

  • Heo, Young-chai;Bae, Dae-sik;Oh, Chi-young;Suh, Young-jin;Lee, Kun-mo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.9
    • /
    • pp.527-533
    • /
    • 2017
  • Environmental concern about smart phone is growing because it has short product life span while having intensive production technology and cost. In this study environmental impact of the smart phone is quantified using the LCA methodology based on the ISO 14040 series standards. The assessment considers potential environmental impacts across the whole life cycle of the smart phone including; pre-manufacturing; manufacturing; distribution; product use; and end-of-life stages. The pre-manufacturing stage is the most dominant life cycle stage causing the highest environmental impacts among all 10 impact categories assessed. The global warming impacts of the smart phone in the pre-manufacturing, distribution, use, manufacturing, and end-of-life stages were 52.6% 23.9%, 15.7%, 7.0%, and 0.8%, respectively. Sensitivity of the life cycle impact assessment results to the system boundary definition and assumptions made were quite high. Three components of the smart phone, PCB, battery, and display module were identified as the key components causing majority of the potential environmental impact in the pre-manufacturing stage. As such the slim and light-weight design and the use of environmental friendly materials are important design factors for reducing the environmental impact of the smart phone.