• Title/Summary/Keyword: 시멘트 분말도

Search Result 333, Processing Time 0.031 seconds

Improvement of Early Strength of Blast-Furnace Slag Blended Cement at Low Temperature (고로 슬래그 시멘트의 저온 조기 강도 증진)

  • 장복기;임용무;김윤주
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.130-135
    • /
    • 1999
  • The enhanced slag fineness and the batch water of low water-to-cement ratio(W/C) were employed in order to improve the early strength of blast-furnace slag blended cement at low temperature. A grinding aid was used to grind the blast-furnace slag into the fineness of 6,280$\textrm{cm}^2$/g (Blaine), and this fine slag was then homogeneously mixed with the ordinary Portland cement to produce the blast-furnace slag blended cement containing 40% slag by weight composition. On the other hand, the batch water could be reduced from W/C=0.50 (KS L 5105) to W/C=0.33 through a commercial, naphthalene type superplasticizer. Through the method mentioned above, the early strength of the blast-furnace slag blended cement at low temperature could be enhanced even somewhat higher than the Portland cement strength. And the microsturcture of the cement was studied by both the pore structure analysis and the A.C. impedance measurement.

  • PDF

Study of Non Sintered Cement Mortar Using Nanoslag and Alkali Activator (나노슬래그와 알칼리 자극제를 활용한 비소성 시멘트 모르타르에 관한 연구)

  • Jeong, Sung-Wook;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.6
    • /
    • pp.61-66
    • /
    • 2010
  • As global warming has had harmful effects on the environment, the construction industry has made efforts to reduce the amount of $CO_2$ generated in the process of cement production. There is an urgent need for an alternative material that can replace cement. To improve the initial strength and economical efficiency pointed out as problems, this research was conducted for Blast Furnace Slag (BFS), an industrial byproduct. Non-sintering cement (NSC) was used by minimizing the amount of high-priced alkali activators. By using Nano-technology, fineness has been maximized, to enhance the initial strength of BFS. This research is based on non-sintered cement replaced by nano-slag using alkali activators, and the fundamental properties and quality of the non-sintered cement were investigated. A variety of activators were used, up to 10 percent of the slag weight. This research aims to present fundamental data through a comparative analysis of flexural strength, compressive strength, time of setting, diabetic temperature, and rising heat.

Effect of Blast Furnace Slag on Rheological Properties of Fresh Mortar (고로슬래그미분말의 치환율 변화에 따른 굳지않은 모르타르의 레올로지 특성 검토)

  • Lim, Ji-Hee;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.4
    • /
    • pp.285-291
    • /
    • 2014
  • Partial replacement of cement with blast furnace slag has many advantages such as the reduction of construction fee, the decrease of hydration heat and the increase of long-term strength. Hence, slag is widely used in practice. This study investigates the effect of slag on the rheological properties of cement paste and mortar. Three different types of slag (BS1, BS2 and BS3) with five different contents (0, 20, 40, 60 and 80 wt.%) were used to replace the cement. Each type of slag has different fineness. Water to binder ratio was 0.5. Test results showed that the partial replacement of BS1 and BS2 decreased flow and increased O-lot flow time, whereas that of BS3 caused an opposite effect, i.e., increased flow and decreased O-lot flow time. It was found that there was a good corelation between the values of yield stress and flow.

A Study on Viscosity Reducing of Cement-Based Materials by Replacing Byproducts and Adding Low-Viscosity Type HRWR (산업부산물 치환 및 저점도형 고성능 감수제를 사용한 시멘트 계열 재료의 점도저하 방안 연구)

  • Son, Bae-Geun;Han, Dongyeop
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.353-358
    • /
    • 2017
  • The aim of this research is providing a fundamental idea on reducing viscosity of high performance cementitous materials. In rheological aspect, to determine the fluidity of the cementitious materials, both yield stress and viscosity should be controlled. For the high performance cementitious materials with low water-to-binder ratio and high volume fraction, it was difficult to reduce the viscosity with superplasticizer while reducing yield stress was relatively easy. Hence, in this research, with the goal of reducing viscosity of the cementitious materials, both ways of reducing viscosity were suggested: achieving proper combination of powder conditions, and adding low-viscosity typed water reducer. First, by replacing various byproduct powders, specifically, raw coal ash and wasted limestone powder showed favorable results on reducing viscosity of the cement paste. Regarding the low viscosity typed superplasticizer, it showed a good performance on reducing viscosity comparing with generic superplasticizer. Therefore, based on the results of this research, it is expected to provide a fundamental idea on reducing viscosity of cementitious materials by various methods.

Flame Retardant Properties of Polymer Cement Mortar Mixed with Light-weight Materials for 3D Printing (3D 프린팅용 경량재료 혼입 폴리머 시멘트 모르타르의 난연특성)

  • Son, Bae-Geun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.330-337
    • /
    • 2021
  • 3D printing is not only at the fundamental study and small-scale level, but has recently been producing buildings that can be inhabited by people. Buildings require a lot of cost and labor to work on the form work, but if 3D printing is applied to the building, the construction industry is received attention from technologies using 3D printing as it can reduce the construction period and cost. 3D printing technology for buildings can be divided into structural and non-structural materials, of which 3D printing is applied to non-structural materials. Because 3D printing needs to be additive manufacturing, control such as curing speed and workability is needed. Since cement mortar has a large shrinkage due to evaporation of water, cement polymer dispersion is used to improve the hardening speed, workability, and adhesion strength. The addition of polymer dispersion to cement mortar improves the tensile strength and brittleness between the cement hydrate and the polymer film. Cement mortar using polymer materials can be additive manufacturing but it has limited height that can be additive manufacturing due to its high density. When light-weight materials are mixed with polymer cement mortar, the density of polymer cement mortar is lowered and the height of additive manufacturing, so it is essential to use light-weight materials. However, the use of EVA redispersible polymer powder and light-weight materials, additional damage such as cracks in cement mortar can occur at high temperatures such as fires. This study produced a test specimen incorporating light-weight materials and EVA redispersible polymer powder to produce exterior building materials using 3D printing, and examined flame resistance performance through water absorption rate, length change rate, and cone calorimeter test and non-flammable test. From the test result, the test specimen using silica sand and light-weight aggregate showed good flame resistance performance, and if the EVA redispersible polymer powder is applied below 5%, it shows good flame resistance performance.

Type of Solution and the Effects of Temperature Change in a Rapid Appraisal of Cement Fineness with a Liquid Densimeter (액체밀도계에 의한 시멘트의 분말도 신속평가에서 용액 종류 및 온도변화의 영향)

  • Lee, Jae-Jin;Kim, Min-Sang;Moon, Byeong-Yong;Kim, Yeong-Tae;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.167-168
    • /
    • 2017
  • With the recent increase in demand for construction there has been an increase in the use of the raw material cement when mixing concrete; managing quality of cement powder, therefore, is most important. Therefore this study sought at first to develop a rapid appraisal using the Hydrometer method researched previously, for it was thought that when suspending cement in a solution and applying the Hydrometer method to it the temperature changes in the solution would have a great effect on the density value of the Hydrometer method; yet there has been no report of such influence factors. Therefore after analyzing the influence factors that the type of suspending solution and changes in temperature could have on rapid appraisal of fineness, using the Hydrometer method, this study was able to determine that using water at 20℃ was the most appropriate, and with every temperature increase of 10℃ the value of fineness should also be increased above or below 7% as well.

  • PDF

Analysis of Possibilities of Rapid Appraisal of Blast Furnace Slag Cement Fineness Quality Using the Hydrometer Method (Hydrometer법을 이용한 고로슬래그 시멘트의 분말도 신속 품질 평가 가능성 분석)

  • Lee, Jae-Jin;Kim, Min-Sang;Moon, Byeong-Yong;Han, In-Deok;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.169-170
    • /
    • 2017
  • Recently in the construction industry there has been an increasing use of increasing replacement of cement with blast furnace slag cement(BS), an industrial by-product, to reduce environment load and production costs, and other increasing uses of BS cement. However in the case of BS being delivered in RMC factories, only score reports submitted when the are delivered are relied upon and ways to test the quality of fineness is inadequate. Therefore this study gave many changes to various cements and BS fineness to test the variations of BS as a cement, then used the correlation between this and the density value in the Hydrometer method to test the possibility for rapid appraisal of quality fineness of BS cement. Results showed that if the one fifth graph of the density and fineness correlation were to be used, a rapid appraisal of BS cement fineness quality would be possible.

  • PDF

A Feasibility Analysis of Rapid Acquisition Test for Cement Fineness using Hydrometer (시멘트 인수검사 시 액체밀도계법에 의한 분말도 품질 신속평가 가능성 분석)

  • Han, Cheon-Goo;Kim, Young-Tae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.6
    • /
    • pp.29-34
    • /
    • 2018
  • In this research, regarding the cement supplied to ready mixed concrete plant, the feasibility of rapid acquisition test for cement fineness using hydrometer which used for early strength evaluation of concrete was analyzed. Additionally, regarding the rapid test with hydrometer control factors were provided. As a result of analysis, quality control using hydrometer was possible with the regressive equation obtained in five minute between density of suspension and fineness of cement powder. As the control factors, dispersing admixture, replacing kerosene as a medium, and temperature of cement and water were evaluated. According to the control factor evaluation, the tap water was optimum as a medium and calibration of keeping the temperature of water to $20^{\circ}C$ or correction factor was needed for density results. Finally, it is considered that the suggested rapid quality evaluation method using hydrometer is cheaper and easier method than currently used Blaine test.

Effect of VAE Type Powder Polymer on Strength Properties of High Strength Polymer Cement Mortars (VAE 분말수지가 고강도 폴리머 시멘트 모르타르의 강도 특성에 미치는 영향)

  • Choi, Jung-Gu;Lee, Gun-Cheol;Ko, Kyung-Taek;Ryu, Gum-Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.3
    • /
    • pp.299-306
    • /
    • 2015
  • In construction materials area, many research on polymer for cement-based materials have been conducted. In spite of these research, general research scope is limited to the normal strength range, and thus in this research, for both normal and high strength range mixtures, the strength and mechanical properties of high strength cement mortar incorporating Vinyle Acetate-Ethylene(VAE) type powder polymer are evaluated. As a result of experiment, in the case of high strength mixture, as the amount of VAE polymer addition was increased the compressive and flexural strengths were decreased while the tensile and bonding strengths were increased because of the formation of the polymer membrane inside of the mortar matrix.