• Title/Summary/Keyword: 시멘트 모르타르.

Search Result 752, Processing Time 0.027 seconds

Setting Time, Compressive Strength and Drying Shrinkage of Mortar with Alpha-Calcium Sulfate Hemihydrate (α형 반수석고를 치환한 모르타르의 응결 및 압축강도, 건조수축 특성)

  • Lee, Kye-Hyouk;Kim, Gyu-Yong;Lee, Bo-Kyeong;Shin, Kyoung-Su;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.117-124
    • /
    • 2017
  • In this study, to evaluate the setting time, compressive strength and drying shrinkage of ordinary Portland cement and Portland blast-furnace slag cement mortar with 0, 10, 20, 30 wt.% alpha-calcium sulfate hemihydrate. As a results, as the replacement ratio of alpha-calcium sulfate hemihydrate increased, the initial setting time of ordinary Portland cement and Portland blast-furnace slag cement mortar was faster. In addition, the compressive strength decreased with increasing replacement ratio of alpha-calcium sulfate hemihydrate in both ordinary Portland cement mortar and Portland blast-furnace slag cement mortar. The strength development of Portland blast-furnace slag cement mortar with alpha-calcium sulfate hemihydrate was effective than that of ordinary Portland cement mortar. On the other hand, in the case of the mortar with alpha-calcium sulfate hemihydrate, it was confirmed that shrinkage deformation was reduced at the early age by growth pressure of needle-shaped ettringite crystals produced by incorporation of alpha-calcium sulfate hemihydrate. However, the effect of inhibiting shrinkage deformation of mortar with alpha-calcium sulfate hemihydrate was not significant as the age passed. Therefore, it is considered that the alpha-calcium sulfate hemihydrate is useful as a construction material.

The Properties of Durability and Strength of Fiber-Reinforced Polymer-Modified Mortars Using Eco-Friendly UM Resin (친환경 UM수지를 사용한 섬유보강 폴리머 시멘트 모르타르의 내구성 및 강도 특성)

  • Kwon, Min-Ho;Seo, Hyun-Su;Lim, Jeong-Hee;Kim, Jin-Sup
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.313-320
    • /
    • 2013
  • In this study, performance of fiber-reinforced polymer-modified mortar was studied for the development of eco-friendly materials for high performance repair and reinforcement. The general cement mortar and eco-friendly UM resin was mixed with a certain percentage for increased durability. To increase the strength of the polymer-modified mortar, PVA fiber, steel fiber and hybrid fiber were added at a constant rate. Hybrid fiber is contains the same percentage of PVA fiber and steel fiber. In order to determine the strength properties of fiber-reinforced polymer-modified mortar, the compressive strength test, the splitting tensile strength test and the flexural strength test were performed. And, in order to determine the durability properties of fiber-reinforced polymer-modified mortar, water absorption test and chemical resistance test were performed. From the experimental results, polymer-modified mortar using UM resin was improved durability. And the tensile strength and flexural strength increased, which were the vulnerability of fiber reinforced polymer-modified mortar. From this study, fiber-reinforced polymer-modified mortar using eco-friendly UM resin can be used to repair and reinforcement for the external exposure of concrete structures to improve the durability.

Weatherability of Epoxy Cement Mortars without Hardener (경화제를 첨가하지 않은 에폭시 시멘트 모르타르의 내후성)

  • Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.801-809
    • /
    • 2006
  • Epoxy resin has widely been used as adhesives and corrosion-resistant paints in the construction industry for many years, since it has desirable properties such as high adhesion and chemical resistance. Until now, in the production of conventional epoxy cement mortars, the use of any hardener has been considered indispensable for the hardening of the epoxy resin. However we have noticed the fact that even without any hardener, the hardening process of the epoxy resin can proceed by the action of hydroxides in cement mortars. As a result the disadvantages of the two-component mixing of the epoxy resin and hardener have been overcome. The purpose of this study is to evaluate the mechanical properties and durability of epoxy cement mortar without a hardener exposed at indoor and outdoor for one year. The epoxy cement mortars without and with a hardener were prepared with various polymer-cement ratios, and tested for weight change, flexural and compressive strengths, water absorption, carbonation depth and pore size distribution. Especially, the basic properties of the epoxy cement mortars without hardener are discussed in comparison with ones with the hardener. From the test results, it is concluded thai the epoxy cement mortars without a hardener exposed at indoor and outdoor for one year have higher strength and better durability than ones with the hardener within the polymer-cement ratios of 10 to 20%.

Properties of Repair Cement Mortar with C12A7-based Alumina Cement and Nitrite for Low Temperature Curing (C12A7계 알루미나시멘트 및 아질산염을 사용한 저온환경 보수시공용 시멘트 모르타르의 특성)

  • Park, Jung-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.124-131
    • /
    • 2017
  • The purpose of this study is to evaluate the basic performance of cement mortar for repair using alumina cement and nitrite can be cured in low temperature environment. For this purpose, the repair mortar used in the domestic construction site was selected and the experimental evaluation was carried out by adjusting the mixing amount by substituting alumina cement and nitrite for the blending ratio. The experimental test results confirmed that alumina cement and nitrite were replaced with the repair mortar, the initial strength was improved. Also, the chemical resistance was improved, the shrinkage behavior was decreased, and the resistance to freezing and thawing was increased. As a result, applying alumina cement and nitrite at a ratio of 2:1 at 7.5%, the surface condition was maintained for 5 months or longer and it was judged to be excellent in practical use for external structures.

Physical Properties and Durability of Polymer Modified Mortar Using Styrene and Butyl Acrylate Latexes (St/BA 폴리머 시멘트 모르타르의 물리적 특성 및 내구성)

  • Hyung, Won-Gil
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.342-346
    • /
    • 2009
  • The effects of the monomer ratios on the typical properties of polymer modified mortars that contain styrene and butyl acrylate latexes was investigated. Basic data was also obtained that is necessary for the development of appropriate latexes for cement modifiers. Polymer modified mortars that contain styrene and butyl acrylate latexes polymerized with various monomer ratios were prepared for different polymer-cement ratios. They were then tested to obtain the particle size of the polymer latexes, air contents, water-cement ratios, flexural and compressive strengths, water absorption, and chloride-ion penetration. From the test results, the polymer modified mortars that have styrene and butyl acrylate latexes (with the mix proportions of synthesis having monomer ratios of between 40:60 to 60:40 for the appropriate mix proportions) could be recommended for practical applications. The basic properties of the polymer modified mortars were more affected by the polymer-cement ratio than by the monomer ratio, and were improved over unmodified mortar.

Fluidity and Strength Properties of Non-Sintered Cement Mortar according to the Addition of Superplasticizer (감수제 첨가에 따른 비소성 시멘트 모르타르의 유동성 및 강도 특성)

  • Jang, Kyung-Su;Na, Hyeong-Won;Byun, Hui-Jae;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.5
    • /
    • pp.441-450
    • /
    • 2022
  • In this study, the fluidity and strength characteristics of NSC mortar according to the type and rate of addition of superplasticizer were analyzed to secure the fluidity of NSC composed of only slag and ash. Through the flow test, it was found that the fluidity of NSC was related to the basicity according to the binder condition, and the lower the reactivity, the higher the fluidity. When polycarboxylate is added, NSC mortar is considered to be more advantageous than plain mortar in terms of securing fluidity. As a result of the strength tests of NSC mortar containing Lignin or Polycarboxylate superplasticizer, it was found that the strength tends to increase as the basicity increases. In addition, when polycarboxylate is added, it is judged that the NSC mortar can secure adequate fluidity and strength at the same time. Through this experiment, an appropriate binder condition that satisfies the flowability while securing the strength was derived.

Compressive Strength and Water Contact Angle Properties of Cement Mortar by Type of Water Repellent (발수제종류별 잔골재 입도에 따른 시멘트 모르타르의 강도 및 발수특성)

  • Kang, Suk-Pyo;Kang, Hye-Ju;Kim, Sang-Jin;Suh, Jeong-In
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.529-538
    • /
    • 2021
  • In this study, the compressive strength and water contact angle were measured before and after surface abrasion of mortar specimens prepared by mixing two types of water repellents and two types of sands. In addition, the hydration products and chemical bonding of cement mortar by repellent were examined using X-ray diffraction(XRD), thermogravimetry-differential thermal analysis(TG-DTA), and Fourier-transform infrared spectroscopy(FT-IR) to evaluate the performance of these cement mortar mixtures as repair materials. We found that the compressive strength of the cement mortar with water repellent added was decreased compared to that of the plain cement mortar, and that of the oligomeric system was higher than that of the monomeric system. We further found that the contact angle of mortar with water repellent added was increased compared to that of the plain cement mortar, and that of the oligomeric system was increased compared to that of the monomer.

Effect of Calcium Sulfate Dihydrate (Gypsum) on the Fundamental Properties of Slag-based Mortar (이수석고가 고로슬래그 미분말 베이스 무시멘트 모르타르의 기초물성에 미치는 영향)

  • Baek, Byung Hoon;Han, Cheon Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.252-258
    • /
    • 2014
  • With the vision of 'a low carbon green develop' various industrial by-products were used as replacement of cement, in order to reduce $CO_2$ emissions from the manufacturing process of cement. Blast furnace slag is one of the industrial by-products. Due to the similar chemical compositions to ordinary Portland cement, blast furnace slag have been widely used in concrete with minimum side effects. Hence, in recent years, alkali activated slag-based composites are extensively studied by many researchers. However, the alkali activator can cause a number of problems in practice. Therefore, in this study, an alternative way of activating the slag was investigated. To activate the slag without using an alkali activator, calcium sulfate dihydrate was chosen and mixed with natural recycled fine aggregate. Fundamental properties of the slag-based mortar were tested to evaluate the effect of calcium sulfate dihydrate.