• Title/Summary/Keyword: 시멘트계

Search Result 652, Processing Time 0.023 seconds

Application of Earth Natural Grouting Using Micro Cement and Inorganic material (마이크로시멘트 무기질계 그라우팅 ENG의 적용성 연구)

  • Jung, Min-Hyung;Kim, Yong-Sik;Jung, Chun-Hak;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.109-116
    • /
    • 2010
  • The Water glass grouting method has been applied frequently to penetration grouting in practice, but some problems, such as decrease of durability with the elapsed time and environmentally adverse effect, are raised recently. Hence, the Earth Natural Grouting method which uses micro cement and inorganic material is developed to overcomes those problems of the water glass grouting method, and is aimed for extensive ground injection bound. Volumetric strain test, syneresis test, unconfined compression test, triaxial permeability test, in-situ permeability test and heavy metal analysis were conducted to verify application of the ENG. As the result of tests, volumetric strain, syneresis and unconfined strength of the ENG were superior to those of the Water Glass SGR and ENG was proved to be impermeable. Also it is expected that the ENG would not have an effect on environmental pollution.

Carbonation Mechanism of Hydrated Cement Paste by Supercritical Carbon Dioxide (초임계 이산화탄소에 의한 시멘트 페이스트의 중성화 반응 메커니즘)

  • Park, Jeong-Won;Kim, Ji-Hyun;Lee, Min-Hee;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.403-412
    • /
    • 2018
  • Recently, needs for utilization of recycled aggregate have been increasing. However, its utilization has been limited due to its high alkalinity, which mostly came from the unremoved cement paste particles that were attached at the surface of recycled aggregate. Various efforts has been made to reduce its alkalinity by using $CO_2$, but currently available methods that uses $CO_2$ generate the problem with pH recovery. Considering the fact that supercritical $CO_2$ ($scCO_2$) can provide more rapid carbonation of cement paste than by normal $CO_2$, $scCO_2$ was utilized in this work. The reaction between $scCO_2$ and hydrated cement paste has been systematically evaluated. According to the results, it was found that powder type showed higher carbonation compared to that of cube specimens. It seems the carbonation by $scCO_2$ has occurred only at the surface of the specimen, and therefore still showed some amount of $Ca(OH)_2$ calcium aluminates after reaction with $scCO_2$. With powder type specimen, all $Ca(OH)_2$ was converted into $CaCO_3$. Moreover, additional calcium that came from both calcium aluminate hydrates and calcium silicate hydrates reacted with $scCO_2$ to form $CaCO_3$. After carbonation with $scCO_2$, the powder type specimen did not show pH recovery, but cube specimens did show due to the presence of portlandite.

Durability Characteristics of Ternary Cement Matrix Using Ferronickel Slag According to the Alkali-Activators (알칼리 활성화제 종류별 페로니켈슬래그를 사용한 3성분계 시멘트 경화체의 내구특성)

  • Cho, Won-Jung;Park, Eon-Sang;Jung, Ho-Seop;Ann, Ki-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.190-197
    • /
    • 2020
  • This paper evaluates the mechanical properties and durability of cement matrix blended with mineral admixtures and ferronickel slag(FNS) powder which is an industrial b y-product during ferronickel smelting process. The hydration heat, pore structure, compressive strength, length change, rapid chloride penetration test(RCPT), and freezing and thawing resistance of ternary blended cement matrix were investigated and compared with ordinary portland cement matrix. The result showed that the compressive strength of ternary blended cement matrix using ferronickel slag powder and mineral mixture was low in strength compared to the reference concrete, but recovered to a certain extent by using alkali activator. Length change of cement mortar using FNS powder have shown less shrinkage occurs than the reference specimen. In addition, irrespective of using the alkali-activators, all ternary mix are indicative of the 'very low' range for chloride ion penetrability according to the ASTM C 1202, and the freeze-thaw resistance also showed excellent results.

Durability Evaluation of Tunnel Lining Concrete Reinforced with Nylon Fiber (나일론섬유보강 터널 라이닝 콘크리트의 내구성능 평가)

  • Jeon, Joong-Kyu;You, Jin-O;Moon, Jae-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.487-493
    • /
    • 2008
  • Tunnel structures are widely used for transportations in mountains areas. To shorten the construction period and to cut down the construction expenditure, a construction technique that a tunnel excavation process and a tunnel lining process are simultaneously performed is often applied in the field. However, due to the vibration and impact caused by excavation process, cracking and deterioration of tunnel lining concrete could happen. This research experimentally investigated the effective role of the usages of blended cement and recently developed nylon fibers for tunnel lining concrete. It has been observed that both nylon fibers and blended cement improve the durability and physical properties of concrete.

A Study on the Watertightness Improvement of Cementitious Material for Durability Improvement of Concrete (콘크리트 내구성 향상을 위한 시멘트 재료의 수밀성 개선에 관한 연구)

  • Kang, Hyun-Ju;Song, Myong-Shin;Jeong, Eui-Dam
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.17-25
    • /
    • 2010
  • We studied on the watertightness improvement of cementitious material for durability enhancement of concrete. For improvement of watertightness of OPC and OPC with fly ash, we used various materials with watertightness properties to OPC and OPC with fly ash. The performance of watertightness improvement of cementitious materials closely related to formation of CSH by pozzolanic reaction and to reducing of size of contact angle in cement pore by using organic fatty acid. And volume of CSH formation at early hydration have an influence of watertightness improvement and reduction of long-term water absorption rate. In using of fly ash, improvement of workability by using the spherical fly ash caused to densify on the structures of cement material and CSH formation by pozzolanic reaction and cement using fly ash also caused watertightness improvement of cementitious materials. For improvement of concrete durability by watertightness, cementitious materials need using watertightness materials and at using fly ash, also it have to the effect of improvement of watertightness of cementitious materials by pozzolanic reaction.

Characterization of Shrinkage Reducing Type Cement Carbon Dioxide-reducible CSA Synthesis (이산화탄소 저감형 CSA합성을 통한 수축저감형 시멘트의 특성 평가)

  • Cho, Yong-Kwang;Nam, Seong-Young;Kim, Chun-Sik;Cho, Sung-Hyun;Lee, Hyoung-Woo;Ahn, Ji-Whan
    • Journal of Energy Engineering
    • /
    • v.28 no.1
    • /
    • pp.17-21
    • /
    • 2019
  • Calcium sulfaluminate (CSA) was synthesized to improve the shrinkage of OPC. In this study, the setting time, the compressive strength and the length change ratio were confirmed by replacing the synthesized CSA with OPC by 10% and 13% by 16%. In the case of shrinkage-reducing type cement, formation of Ca-Al-$H_2$-based hydrate was activated. Therefore, the setting time was shortened. The compressive strength of the shrinkage - reducing type cement is comparable to that of OPC after 7 days' strength. However, shrinkage reducing type cement showed improved initial strength compared to OPC. The length change ratio was found to be improved by drying shrinkage from -0.075% to -0.047% on the 28th day.

Setting Time and Strength Characteristics of Cement Mixtures with Set Accelerating Agent for Shotcrete (숏크리트용 급결제를 첨가한 시멘트 모르타르의 응결 및 강도특성)

  • Kim Jin-Cheol;Ryu Jong-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.70-78
    • /
    • 2004
  • Although set accelerating agents are used generally in New Austrian Tunneling Method, the standards for test methods and quality of set accelerating agents are not prescribed domestically. In this study, the proprieties of the various standards and the characteristics of set accelerating agents for shotcrete were evaluated. The alkali contents of set accelerating agents based on silicate, aluminate and cement were higher than those of alkali-free ones. From the result, it is thought that the quality control of aggregate should be enhanced and that the number of test cycle of alkali-aggregate reaction should be increased. The setting times of cement paste with set accelerating agents based on silicate and alkali-free ones were different largely with mixing methods. Compressive strength of mortar with set accelerating agents based on silicate, aluminate and cement at one day satisfied the specifications of Korea Concrete Institute. However, the strength ratio compared to control mix at 28 days showed as $50{\~}65\%$ except for the alkali-free set accelerating agents. As a results of setting time and strength test, the establishment of domestic standards that can reflect the characteristics of materials and construction methods of tunnels and that can increase quality of set accelerating agents is required immediately.

The Fundamental Properties of High Fluidity Mortar with Activated Ternary Blended Slag Cement (활성화된 삼성분계 고유동 모르타르의 기초특성)

  • Bae, Ju-Ryong;Kim, Tae-Wan;Kim, In-Tae;Kim, Hyoung-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.74-82
    • /
    • 2017
  • This research presents the results of the strength and drying shrinkage properties to study the effect of ground granulated blast furnace slag(GGBFS), fly ash(FA) and calcium sulfoaluminate(CSA) for activated ternary blended slag cement. The activated ternary blended cement(ATBC) mortar were prepared having a constant water-cementitious materials ratios of 0.4. The GGBFS contents ratios of 100%, 80%, 70% and 60%, FA replacement ratios of 10%, 20%, 30% and 40%, CSA ratios of 0%, 10%, 20% and 30% were designed. The superplasticizer of polycarboxylate type were used. The activator was used of 10% sodium hydroxide(NaOH) + 10% sodium silicate($Na_2SiO_3$) by weight of binder. Test were conducted for mini slump, setting time, V-funnel, water absorption, compressive strength and drying shrinkage. According to the experimental results, the contents of superplasticizer, V-funnel and compressive strength increases with an increase in CSA contents for all mixtures. Moreover, the setting time, water absorption ratios and drying shrinkage ratio decrease with and increase in CSA. One of the major reason for the increase of strength and decrease of drying shrinkage is the accelerated reactivity of GGBFS with alkali activator and CSA. The CSA contents is the main parameter to explain the strength development and decreased drying shrinkage in the ATBC.

Effect of Adding of II-Anhydrite and Superplasticizer on the Fluidity of Cement Paste (II형 무수석고 및 고유동화제 첨가가 시멘트 페이스트의 유동성에 미치는 영향)

  • Kim, Jae-Ho;Kim, Do-Su;Lee, Beom-Jae;Rho, Jae-Seong
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.336-341
    • /
    • 1998
  • A comparative study on the effects of mean particle diameter and substitutional ratio of II-anhydrite on the fluidity of cement paste has been conducted. Three different mean particle diameters(4, 14 and $35{\mu}m$) and four different substitution ratios(3, 5, 10, 15wt%) have been tested while the dosage of two superplasticizers - naphtalenic(NSF) and polycarboxylic(NT-2) - has been varied from 0 to 2.0wt%. To investigate the effects of those parameters, the variation in fluidity and apparent viscosity of the cement paste has been observed as a function of the elapsed time. The initial fluidity of the cement paste is more affected by the increase in substitution ratio than by the mean particle size of the II-anhydrite. When the substitution ratio of the II-anhydrite is fixed at 10wt%, addition of 1.0wt% NT-2 improves the fluidity of paste cement more than that for NSF. This case has showed the best improvement of the fluidity in the range of parameters investigated. At the addition of 1.0wt% NT-2, apparent viscosity of the cement paste has been noticeably decreased as substitutional ratio of II-anhydrite increases. It was found that it would be more effective to substitute II-anhydrite at a certain ratio to improve the fluidity of the cement paste, in addition to adding NT-2.

  • PDF

Tensile Properties and Adhesion of Hybrid-Type Anti-Corrosion Polymer Cement Slurry (하이브리드형 방식 폴리머 시멘트 슬러리의 인장특성 및 접착성)

  • Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.635-642
    • /
    • 2008
  • In recent years, epoxy-coated reinforcing bars have been widely used in order to prevent the corrosion of ordinary reinforcing bar. However, they have a bad balance between performance and cost. Especially, they have a brittleness properties, low bond strength to cement concrete and no good bend-ability in the field. The purpose of this study is to evaluate the tensile properties and adhesion of hybrid-type anti-corrosion polymer cement slurry (PCS). PCSs are prepared with four types polymer dispersions using fly ash and silica fume, and tested for proper coating thickness, tensile properties, adhesion to steel plate and bend-ability. From the test results, the viscosity of PCS is effected by polymer dispersion types, and is a little decreased by using fly ash. The coating thickness of PCS has a proper thickness at polymer-binder ratio of 100%. It is apparent that the coating thickness has various values according to viscosity of PCS, water-binder ratio and polymer-binder rato. PCS has a good various anticorrosion properties and physical properties such as tensile strength, adhesion and bend-ability. It is also recommended that proper coating thickness to reinforcing bar is in the ranges of 150 to $250{\mu}m$ for bond strength, adhesion and bend-ability. It is also expected that the coated reinforcing bar using PCS is widely used instead of epoxy coated reinforcing bar in the industrial field.