DOI QR코드

DOI QR Code

Characterization of Shrinkage Reducing Type Cement Carbon Dioxide-reducible CSA Synthesis

이산화탄소 저감형 CSA합성을 통한 수축저감형 시멘트의 특성 평가

  • Cho, Yong-Kwang (Environment Materials Team, Hanil Cement CO.Ltd.) ;
  • Nam, Seong-Young (Environment Materials Team, Hanil Cement CO.Ltd.) ;
  • Kim, Chun-Sik (Environment Materials Team, Hanil Cement CO.Ltd.) ;
  • Cho, Sung-Hyun (Environment Materials Team, Hanil Cement CO.Ltd.) ;
  • Lee, Hyoung-Woo (Environment Materials Team, Hanil Cement CO.Ltd.) ;
  • Ahn, Ji-Whan (Center for Carbon Mineralization, Korea Institute of Geosceinces and Mineral Resources)
  • 조용광 (한일시멘트 환경소재팀) ;
  • 남성영 (한일시멘트 환경소재팀) ;
  • 김춘식 (한일시멘트 환경소재팀) ;
  • 조성현 (한일시멘트 환경소재팀) ;
  • 이형우 (한일시멘트 환경소재팀) ;
  • 안지환 (한국지질자원연구원 탄소광물화사업단)
  • Received : 2019.01.30
  • Accepted : 2019.03.11
  • Published : 2019.03.29

Abstract

Calcium sulfaluminate (CSA) was synthesized to improve the shrinkage of OPC. In this study, the setting time, the compressive strength and the length change ratio were confirmed by replacing the synthesized CSA with OPC by 10% and 13% by 16%. In the case of shrinkage-reducing type cement, formation of Ca-Al-$H_2$-based hydrate was activated. Therefore, the setting time was shortened. The compressive strength of the shrinkage - reducing type cement is comparable to that of OPC after 7 days' strength. However, shrinkage reducing type cement showed improved initial strength compared to OPC. The length change ratio was found to be improved by drying shrinkage from -0.075% to -0.047% on the 28th day.

OPC의 건조수축을 개선시키기 위해 Calcium sulfaluminate(CSA)를 합성하여 수축저감형시멘트를 제조하였다. 본 연구에서는 합성된 CSA를 OPC에 10%, 13% 16%대체하여 응결시간, 압축강도, 길이변화율을 확인하였다. CSA를 함유한 수축저감형시멘트의 경우 Ca-Al-$H_2$계 수화물의 생성 활성화를 통해 응결시간이 크게 단축되는 것을 확인하였다. 압축강도의 경우 7일 강도 이후에는 기존OPC와 동등 수준이나 초기강도는 향상되는 결과를 확인하였다. 길이변화율은 28일 기준으로 -0.075%에서 -0.047%의 길이변화가 발생하였으며, 이로 인해 건조수축 안정성이 향상된 것을 확인하였다.

Keywords

References

  1. Sherman N, Beretka J, Santoro L, and Valenti L., 1995, Long-Term Behaviour of Hydraulic Binders Based on Calcium Sulfoaluminate and Calcium sulfosilicate, Cem. Conc. Res., Vol. 25, No. 1, pp73-79.
  2. Shin, G. Y. and Han, K. S., 1990, "The Early Hydration Characteristics of the system, $C_3S-C_3A-C_4AF(1)$, J. Kor. Ceram. Soc., Vol. 27, No. 8, pp1055-1063.
  3. Mikoc, M and Matkovic B, 1992, Effect of calcium sulfoal iminate and Gypsum Addition on Strength Development of Belite Cement, J. Am. Ceram. Soc., Vol. 71, No. 7, pp1131-1134.
  4. Song, J. T., Cho, J. S., Jeun, J. Y., 2001, Preparation and Properties of CSA Type Expansive Cement Using Industrial By-products, Journal of the Korean Ceramic Society., Vol. 38, No. 2, pp183-192.
  5. Cho, Y. K., Nam, S. Y., Kim, C. S., Lee, H. W., Jo, S. H., Ahn, J. W., 2018, Evaluation of Physical Properties of Mine Polymer Liner and Cover Material Containing Re-emulsification Type EVA Resin, Polymer(Korea) Vol. 42, No. 4, pp637-642. https://doi.org/10.7317/pk.2018.42.4.637
  6. Palglia, C., Wombacher, F., Bohni, H., 2001, The influence of alkali-free and alkaline shoterete accelerators within cement systems-I. characterization of the setting behavior, Cement & Concrete Research, Vol. 31, No. 2 pp913-918. https://doi.org/10.1016/S0008-8846(01)00509-9
  7. Hong, K. N., Jung, J. Y., Han, S. H., 2011, Material Properties of Grout Using Alumina Cement and Anhydrite, Journal of the KOSOS, Vol. 26, No. 5 pp59-64.