Linked Data allows structured data to be published in a standard way that datasets from various domains can be interlinked. With the rapid evolution of Linked Open Data(LOD), researchers are exploiting it to solve particular problems such as semantic similarity assessment. In this paper, we propose a method, on top of the basic concept of Linked Data Semantic Distance (LDSD), for calculating the Linked Data semantic distance between resources that can be used in the LOD-based recommender system. The semantic distance measurement model proposed in this paper is based on a similarity measurement that combines the LOD-based semantic distance and a new link weight using TF-IDF, which is well known in the field of information retrieval. In order to verify the effectiveness of this paper's approach, performance was evaluated in the context of an LOD-based recommendation system using mixed data of DBpedia and MovieLens. Experimental results show that the proposed method shows higher accuracy compared to other similar methods. In addition, it contributed to the improvement of the accuracy of the recommender system by expanding the range of semantic distance calculation.
Proceedings of the Korea Information Processing Society Conference
/
2015.04a
/
pp.722-725
/
2015
모바일 환경에서 사용자의 GPS 궤적은 위치기반서비스(Location Based Service)에서 새로운 자원으로써 활용되고 있다. 위치기반서비스의 확장을 위해 단순히 사용자의 위치를 지도에 표시하는 것뿐만 아니라 사용자들이 위치했던 장소들이 내포하고 있는 의미를 발견해 내는 것이 필요하다. 이를 위해 최근 사용자의 위치정보에 관심지점(POI: Point of Interest)의 정보를 결합하여 시맨틱 궤적(Semantic Trajectory)을 생성하고 분석하는 연구들이 진행되고 있다. 이러한 기존연구의 경우 시맨틱 궤적을 생성하기 위해, 사용자의 GPS 궤적과 POI의 면적 정보(polygon)가 겹칠 경우를 찾아내서 이를 시맨틱 궤적으로 생성하였다. 하지만 대부분 공개된 POI 정보는 실제 장소들의 면적 정보를 제공하지 않고 좌표(point) 값 만을 제공하기 때문에 기존의 방법으로는 시맨틱 궤적을 생성하지 못하는 문제가 있다. 본 논문에서는 사용자의 GPS 궤적과 POI의 좌표 값을 이용하여 사용자가 실제 방문했을 것으로 예상되는 POI 를 추정하고 이를 시맨틱 궤적으로 생성해 내는 방법을 제안한다. 제안하는 기법은 GPS 궤적의 속력 정보를 사용하여 사용자가 정지했었던 구간을 판별하고, 정지 구간 주변의 POI 밀도에 따라 정지 구간을 영역으로 확장한다. 그리고 영역에 포함된 POI 중 정지 구간과의 거리가 가장 가깝고, 가장 오랜 시간 포함되었던 POI를 사용자가 방문했던 POI로 판단한다. 이 방법은 POI의 면적정보가 없는 제한적인 상황에서도 시맨틱 궤적을 생성할 수 있다는 장점을 가진다.
Proceedings of the Korean Information Science Society Conference
/
2011.06a
/
pp.298-301
/
2011
모바일 기기에서 수집된 많은 정보들은 시맨틱한 정보들을 포함하고 있기 때문에 수치 해석에 특화된 클러스터링 등의 데이터마이닝 방법들을 적용하기가 힘들다. 따라서 상대적인 유사도를 계산하는 방법이 많이 이용되지만, 상대적인 유사도 값조차 유클리드 거리로 환산이 불가능한 특징을 가지는 경우가 많다. 본 논문에서는 비유클리드 특징을 가지는 유사도를 TFIDF 와 pseudo-Euclidean embedding을 적용하여 유클리드 공간 상의 거리값으로 변환하는 방법을 제안한다. 제안하는 방법의 가능성을 보이기 위하여 모바일 기기에서 대학생들의 생활 패턴을 반영하는 데이터를 수집하고, 수집된 데이터에 제안하는 방법을 적용한다. 그리고 적용된 결과를 대학생들의 생활 패턴과 비교하여 분석한다. 또한 장소 간의 유사도를 이용하는 애플리케이션의 프로토타입을 개발한다.
Web pages with complex layout and small font size do not display well on large screen display such as TV because it has limited capabilities: long distance view, passive user attitude, limited input device like a legacy remote controller. We have designed and implemented new semantic zoom browsing facilities to support effective navigation on Internet-connected digital television with limited capabilities. Our browser performs partitioning of an HTML document content into semantic blocks. Semantic blocks present summarized information with more readable style and modified layout for optimal reading and browsing. Individual blocks can be selected by the user and zoomed in more detail information by the user. The scrolling on large display device needs more user interaction. Our browser modifies the layout of an HTML document with removing horizontal scrolling and minimizing vertical scrolling. This method allows users to easily view the web page by converting into optimal reading style and layout and to easily seek the information just with zooming.
A simple approach to semantic document-retrieval is to measure document similarity based on the bag-of-words representation, e.g., cosine similarity between two document vectors. However, such a syntactic method hardly considers the semantic similarity between documents, often producing semantically-unsound search results. We circumvent such a problem by combining supervised machine learning techniques with ontology information based on Markov logic. Specifically, Markov logic networks are learned from similarity-tagged documents with an ontology representing the diverse relationship among words. The learned Markov logic networks, the ontology, and the training documents are applied to the semantic document-retrieval task by inferring similarities between a query document and the training documents. Through experimental evaluation on real world question-answering data, the proposed method has been shown to outperform the simple cosine similarity-based approach in terms of retrieval accuracy.
Journal of the Korean Association of Geographic Information Studies
/
v.13
no.4
/
pp.170-180
/
2010
With development of the earth's subsurface space, the need for a reliable subsurface spatial model such as a cross-section, boring log is increasing. However, the ground mass was essentially uncertain. To generate model was uncertain because of the shortage of data and the absence of geotechnical interpretation standard(non-statistical uncertainty) as well as field environment variables(statistical uncertainty). Therefore, the current interpretation of the data and the generation of the model were accomplished by a highly trained experts. In this study, a geotechnical ontology model was developed using the current expert experience and knowledge, and the information content was calculated in the ontology hierarchy. After the relative distance between the information contents in the ontology model was combined with the distance between cluster centers, a cluster analysis that considered the geotechnical semantics was performed. In a comparative test of the proposed method, k-means method, and expert's interpretation, the proposed method is most similar to expert's interpretation, and can be 3D-GIS visualization through easily handling massive data. We expect that the proposed method is able to generate the more reasonable subsurface spatial information model without geotechnical experts' help.
Journal of the Korean BIBLIA Society for library and Information Science
/
v.22
no.2
/
pp.141-160
/
2011
This study suggested knowledge base and search engine for the libraries that have the largescaled data. For this purpose, 3 components of knowledge bases(triple ontology, concept-based knowledge base, inverted file) were constructed and 3 search engines(search engine JENA for rule-based reasoning, Concept-based search engine, keyword-based Lucene retrieval engine) were implemented to measure their performance. As a result, concept-based retrieval engine showed the best performance, followed by ontology-based Jena retrieval engine, and then by a normal keyword search engine.
This study demonstrates how social network analysis can be used for identifying potential buyers in technology marketing; in such, the methodology and empirical results are proposed. First of all, we derived the three most important 'seed' keywords from 'technology description' sections. The technologies are generated by various types of R&D activities organized by South Korea's public research institutes in the fundamental science fields. Second, some 3, 000 words were collected from websites related to the three 'seed' keywords. Next, three network matrices (i.e., one matrix per seed keyword) were constructed. To explore the technology network structure, each network is analyzed by degree centrality and Euclidean distance. The network analysis suggests 100 potentially demanding companies and identifies seven common companies after comparing results derived from each network. The usefulness of the result is verified by investigating the business area of the firm's homepages. Finally, five out of seven firms were proven to have strong relevance to the target technology. In terms of social network analysis, this study expands its application scope of methodology by combining semantic network analysis and the technology marketing method. From a practical perspective, the empirical study suggests the illustrative framework for exploiting prospective demanding companies on the web, raising possibilities of technology commercialization in the basic research fields. Future research is planned to examine how the efficiency of process and accuracy of result is increased.
Journal of the Korea Society of Computer and Information
/
v.12
no.5
/
pp.121-129
/
2007
Scalarization is a process that a parallel construct like an array statement of Fortran 90 or FORALL of HPF is converted into sequential loops that maintain the correct semantics. Most compilers of HPF, recognized as a standard data parallel language, convert a HPF program into a Fortran 77 program inserted message passing primitives. During scalariztion, a parallel construct FORALL should be translated into Fortran 77 DO loops maintaining the semantics of FORALL. In this paper, we propose a scalarization algorithm which converts a FORALL construct into a DO loop with improved performance. For this, we define and use a relation distance vector to keep necessary dependence informations. Then we evaluate execution times of the codes generated by our method and by PARADIGM compiler method for various array sizes.
The Transactions of the Korea Information Processing Society
/
v.3
no.5
/
pp.1160-1169
/
1996
In this study, an experiment of information retrieval using fuzzy connection matrix of keywords was conducted. A query for retrieval was constructed from each keyword and Boolean operator such as AND, OR, NOT. In a workstation environment, the performance of the fuzzy retrieval system was proved to be considerably effective than that of the system using the crisp set theory. And both recall ratio and precision ratio showed that the proposed technique would be a possible alternative in future information retrieval. Some special features of this experimental system were ; ranking the results in the order of connectivity, making the retrieval results correspond flexibly by changing the threshold value, trying to accord the retrieval process with the retrieval semantics by treating the averse-connectivity (fuzzy value) as a semantic approximation between kewords.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.