• Title/Summary/Keyword: 시공간 해상도

Search Result 134, Processing Time 0.025 seconds

Geographical Shift in Blooming Date of Kiwifruits in Jeju Island by Global Warming (지구온난화에 따른 제주도 내 참다래 개화일의 지리적 이동)

  • Kwon, Young-Soon;Kim, Soo-Ock;Seo, Hyeong-Ho;Moon, Kyung-Hwan;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.4
    • /
    • pp.179-188
    • /
    • 2012
  • A kiwifruit cultivar 'Hayward' has been grown in Jeju Island where the current climate is suitable for growth and development of this crop. Prediction of the geographical shift in the phenology can help the kiwifruits growers to adapt to the local climate change in the future. Two phenology models (i.e., chill-day and DVS) were parameterized to estimate flowering date of kiwifruits 'Hayward' based on the data collected from field plots and chamber experiments in the southern coastal and island locations in South Korea. Spatio-temporally independent datasets were used to evaluate performance of the two models in predicting flowering date of 'Hayward'. Chill-day model showed better performance than DVS model (2.5 vs. 4.0 days in RMSE). Daily temperature data interpolated at a higher spatial resolution over Jeju Island were used to predict flowering dates of 'Hayward' in 2021-2100 under the A1B scenario. According to the model calculation under the future climate condition, the flowering of kiwifruits shall accelerate and the area with poor flowering might increase due to the warmer winter induced insufficient chilling. Optimal land area for growing 'Hayward' could increase for a while in the near future (2021-2030), whereas such areas could decrease to one half of the current areas by 2100. The geographic locations suitable for 'Hayward' cultivation would migrate from the current coastal area to the elevated mountain area by 250 m.

Evaluation of High-Resolution QPE data for Urban Runoff Analysis (고해상도 QPE 자료의 도시유출해석 적용성 평가)

  • Choi, Sumin;Yoon, Seongsim;Lee, Byongju;Choi, Youngjean
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.9
    • /
    • pp.719-728
    • /
    • 2015
  • In this study, urban runoff analyses were performed using high resolution Quantitative Precipitation Estimation (QPE), and variation of rainfall and runoff were analyzed to evaluate QPE data for urban runoff analysis. The five drainage districts (Seocho3, 4, 5, Yeoksam and Nonhyun) around Gangnam station were chosen as study area, the area is $7.4km^2$. Rainfall data from KMA AWS (34 stations), SKP AWS (156 stations) and Gwanduk radar were used for QPEs in Seoul area. Four types of QPE(QPE1: KMA AWS, QPE2: KMA+ SKP AWS, QPE3: Gwangduk radar, QPE4: QPE2+QPE3) of 6 events in July 2013 were generated by using Krigging and conditional merging. The temporal and spatial resolution of QPEs are 10 minutes and 250 m, respectively. The complex pipe network were treated as 773 manholes, 772 sub-drainage districts and 1,059 pipelines for urban runoff analysis as input data. QPE2 and QPE4 show spatial variation of rainfall by sub-drainage districts as 1.9 times bigger than QPE1. The peak runoff of QPE2 and QPE4 also show spatial variation as 6 times bigger than Gangnam and Seocho AWS. Thus, the spatial variation of rainfall and runoff could exist in small area such as this study area, and using high-resolution rainfall data is desirable for accurate urban runoff analysis.

Development of real-time program correcting error in radar polarimetric variables (실시간 레이더 편파변수 오차 보정 프로그램 개발)

  • Yoon, Jungsoo;Hwang, Seok-Hwan;Kang, Narae;Lee, Dong-Ryul;Lee, Keon-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1329-1338
    • /
    • 2021
  • Rain radar provides high spatio-temporal radar rainfall that can be used as input data to short-term precipitation forecasting models. Korea Institute of Civil Engineering and Building Technology (KICT) has developed a flash flood forecasting system that is providing flash flood forecasting based on short-term rainfall forecasts estimated by the radar rainfall. Accuracy of the radar rainfall as well as the short-term rainfall forecasts, however, can deteriorate when radar polarimetric variables have error. In this study, we develope real-time program that can correct the error inherent in the radar polarimetric variables. First, effect according to the correction of the error was verified using 363 rainfall events on non real-time. The accuracy (1-NE) of the radar rainfall was approximately 70% and correlation coefficient was higher than 0.8 after correcting the error on non real-time. The accuracy (1-NE) using the real-time program was also approximately 70% after correcting the error.

The GOCI-II Early Mission Marine Fog Detection Products: Optical Characteristics and Verification (천리안 해양위성 2호(GOCI-II) 임무 초기 해무 탐지 산출: 해무의 광학적 특성 및 초기 검증)

  • Kim, Minsang;Park, Myung-Sook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1317-1328
    • /
    • 2021
  • This study analyzes the early satellite mission marine fog detection results from Geostationary Ocean Color Imager-II (GOCI-II). We investigate optical characteristics of the GOCI-II spectral bands for marine fog between October 2020 and March 2021 during the overlapping mission period of Geostationary Ocean Color Imager (GOCI) and GOCI-II. For Rayleigh-corrected reflection (Rrc) at 412 nm band available for the input of the GOCI-II marine fog algorithm, the inter-comparison between GOCI and GOCI-II data showed a small Root Mean Square Error (RMSE) value (0.01) with a high correlation coefficient (0.988). Another input variable, Normalized Localization Standard (NLSD), also shows a reasonable correlation (0.798) between the GOCI and GOCI-II data with a small RMSE value (0.007). We also found distinctive optical characteristics between marine fog and clouds by the GOCI-II observations, showing the narrower distribution of all bands' Rrc values centered at high values for cloud compared to marine fog. The GOCI-II marine fog detection distribution for actual cases is similar to the GOCI but more detailed due to the improved spatial resolution from 500 m to 250 m. The validation with the automated synoptic observing system (ASOS) visibility data confirms the initial reliability of the GOCI-II marine fog detection. Also, it is expected to improve the performance of the GOCI-II marine fog detection algorithm by adding sufficient samples to verify stable performance, improving the post-processing process by replacing real-time available cloud input data and reducing false alarm by adding aerosol information.

The Characteristics of Submarine Groundwater Discharge in the Coastal Area of Nakdong River Basin (낙동강 유역의 연안 해저지하수 유출특성에 관한 연구)

  • Kim, Daesun;Jung, Hahn Chul
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1589-1597
    • /
    • 2021
  • Submarine groundwater discharge (SGD) in coastal areas is gaining importance as a major transport route that bring nutrients and trace metals into the ocean. This paper describes the analysis of the seasonal changes and spatiotemporal characteristicsthrough the modeling monthly SGD for 35 years from 1986 to 2020 for the Nakdong river basin. In this study, we extracted 210 watersheds and SGD estimation points using the SRTM (Shuttle Radar Topography Mission) DEM (Digital Elevation Model). The average annual SGD of the Nakdong River basin was estimated to be 466.7 m2/yr from the FLDAS (Famine Early Warning Systems Network Land Data Assimilation System) recharge data of 10 km which is the highest resolution global model applicable to Korea. There was no significant time-series variation of SGD in the Nakdong river basin, but the concentrated period of SGD was expanded from summer to autumn. In addition, it was confirmed that there is a large amount of SGD regardless of the season in coastal area nearby large rivers, and the trend has slightly increased since the 1980s. The characteristics are considered to be related to the change in the major precipitation period in the study area, and spatially it is due to the high baseflow-groundwater in the vicinity of large rivers. This study is a precedentstudy that presents a modeling technique to explore the characteristics of SGD in Korea, and is expected to be useful as foundational information for coastal management and evaluating the impact of SGD to the ocean.

Application of Drone for Analysis of 2D Pollutant Mixing in River (하천에 유입된 오염물질의 2차원 혼합 분석을 위한 드론의 활용)

  • Seo, Il Won;Baek, Donghae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.100-100
    • /
    • 2017
  • 하천에 유입된 오염물질의 2차원 혼합거동은 하천 주흐름에 의한 이송현상과 유속 성분의 수심평균 값에 대한 공간적 편차로부터 야기되는 분산현상으로 설명 할 수 있다. 이는 3차원 이송확산 방정식으로부터 수심 적분된 2차원 이송-분산 방정식으로 수학적 유도가 가능하며, 수심방향으로 적분하는 과정에서 발생되는 농도의 분산항은 Taylor Dispersion 개념에 기초하여 종방향 및 횡방향의 2차원 분산계수로 표현된다. Fischer(1978)는 연직방향 유속분포로부터 2차원 분산계수를 추정하는 해석해를 수학적으로 유도하였으나, 실제 하천에서 정밀한 연직방향 유속분포를 계측하는 것은 많은 비용 및 노동력을 초래한다. 따라서 선행 연구자들은 2차원 혼합모형의 분산계수를 산정하고자 실험적 방법으로써 추적자실험을 수행하였다. 추적자실험은 추적자 물질을 수체에 주입한 후 농도의 변화를 관측함으로써 추적자물질이 하천에서 이송 및 분산되는 과정을 이해하는데 유용하다. 기존의 추적자실험은 고정된 위치에서 농도를 계측하여 시계열적인 농도의 변화를 관측한 후, 오염운 동결가정을 통해 종,횡방향 분산계수의 산정이 가능하지만, 오염물질 농도의 공간적 분포를 얻기에는 한계가 있다. 본 연구에서는 기존의 추적자실험법의 한계를 극복하고자 형광물질을 이용한 추적자실험을 수행함과 동시에 드론에 장착된 디지털카메라를 이용하여 항공영상을 취득 및 분석하여, 하천에 주입된 형광물질의 농도분포를 시공간적으로 추출하는 기법을 개발하고, 이를 바탕으로 오염물질의 2차원 혼합거동을 분석하였다. 본 실험은 한국건설기술연구원의 안동하천실험센터의 A3실험수로에서 수행되었으며, 실험수로는 평균 하폭 5 m, 평균 수심 0.44 m, 유량 $0.96m^3/s$의 실제 소규모 하천과 유사한 축척을 가지고 있다. 추적자물질은 Rhodamine WT 용액이 사용되었으며, 실험수로 내 설치된 15개의 형광광도계(YSI-600OMS)를 이용하여 농도를 측정하였다. 항공영상의 취득을 위해 이용된 드론은 DJI-Phantom 3 Professional 이며, 3840x2160의 해상도로 초당 30 frame의 동영상으로 취득되었다. 영상의 정합 및 좌표화를 위해 RTK-GPS를 이용하여 12개의 지상 기준점의 좌표를 취득한 후, 사영변환을 통해 영상좌표를 지상좌표로 변환하였다. 영상의 픽셀값을 농도장으로 변환하기 위해 각 RGB 밴드의 픽셀값을 통계적으로 분석하여 농도장으로 변환하였으며, 영상으로부터 얻은 농도장은 형광광도계에 의해 실측된 농도와 결정계수 0.9이상의 수준으로 정확도를 나타냈다.

  • PDF

Quality Evaluation of Long-Term Shipboard Salinity Data Obtained by NIFS (국립수산과학원 장기 정선 관측 염분 자료의 정확성 평가)

  • PARK, JONGJIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.1
    • /
    • pp.49-61
    • /
    • 2021
  • The repeated shipboard measurements that have been conducted by the National Institute of Fisheries Science (NIFS) for more than a half century, provide the valuable long-term hydrographic data with high spatial-temporal resolution. However, this unprecedent dataset has been rarely used for oceanic climate sciences because of its reliability issue. In this study, temporal variability of salinity error in the NIFS data was quantified by means of extremely small variability of salinity in the deep layer of the south-western East Sea, in order to contribute to studies on long-term variability of the East Sea. The NIFS salinity errors estimated on the isothermal surfaces of 1℃ have a remarkable temporal variation, such as ~0.160 g/kg in the year of 1961~1980, ~0.060 g/kg in 1981~1994,~0.020 g/kg in 1995~2002, and ~0.010 g/kg in 2003~2014 on average, which basically represent bias error. In the recent years, even though the quality of salinity has been improved, there still remain relatively large bias errors in salinity data presumably due to failure of salinity sensor managements, especially in 2011, 2013, and 2014. On the contrary, the salinity in the year of 2012 was very accurate and stable, whose error was estimated as about 0.001 g/kg comparable to the salinity sensor accuracy. Thus, as long as developing proper data quality control procedures and sensor management systems, I expect that the NIFS shipboard hydrographic data could have good enough quality to support various studies on ocean response to climate variabilities. Additionally, a few points to improve the current NIFS shipboard measurements were suggested in the discussion section.

Single-Cell-Imaging-Based Analysis of Focal Adhesion Kinase Activity in Plasma Membrane Microdomains Under a Diverse Composition of Extracellular Matrix Proteins (다양한 ECM 조건하에서의 세포막 미세영역 부위 국소접착인산화효소 활성의 단일세포 이미징 기반 분석)

  • Choi, Gyu-Ho;Jang, Yoon-Kwan;Suh, Jung-Soo;Kim, Heon-Su;Ahn, Sang-Hyun;Han, Ki-Seok;Kim, Eunhye;Kim, Tae-Jin
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.148-154
    • /
    • 2022
  • Focal adhesion kinase (FAK) is known to regulate cell adhesion, migration, and mechanotransduction in focal adhesions (FAs). However, studies on how FAK activity is regulated in the plasma membrane microdomains according to the composition of extracellular matrix (ECM) proteins are still lacking. A genetically encoded fluorescence resonance energy transfer (FRET)-based biosensor can provide useful information on the activity of intracellular signals with high spatiotemporal resolution. In this study, we analyzed the FAK activities in lipid raft (detergent-resistant membrane) and non-lipid raft (non-detergent-resistant membrane) microdomains using FRET-based membrane targeting FAK biosensors (FAK-Lyn and FAK-KRas biosensors) under four different ECM protein compositions: glass, type 1 collagen, fibronectin, and laminin. Interestingly, FAK activity in response to laminin in a lipid raft microdomain was lower than that in other ECM conditions. Cells subjected to fibronectin showed higher FAK activity in a lipid raft microdomain than that in a non-lipid raft microdomain. Therefore, this study demonstrates that the FAK activity can be distinctively regulated according to the ECM type and the environment of the plasma membrane microdomains.

Research trends in seabird and marine fish migration: Focusing on tracking methods and previous studies (바닷새 및 해양어류의 이동 연구 동향: 위치추적 기법과 연구 사례를 중심으로)

  • Jin-Hwan Choi;Seongho Yun;Mi-Jin Hong;Ki-Ho Kang;Who-Seung Lee
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.1
    • /
    • pp.25-53
    • /
    • 2022
  • In this study, trends in research methods and topics of seabird and marine fish migration were examined. Based on the framework of existing animal migration studies, future research directions were proposed in relation to the migration of seabirds and fish. In terms of research methodology, with the development of science and technology, tracking techniques using radio telemetry, acoustic telemetry, RFID (radio-frequency identification), satellite tracking, and geolocators are widely used to study seabird and fish migration. Research is also conducted indirectly through a population survey and the analysis of substances in the body. Research contents are largely classified into extrinsic factors that affect migration(such as environmental variables and interspecific competition), intrinsic factors such as hormones, anthropogenic activities including fishery and offshore wind farm, and the effect of global climate change. In future studies, physiological factors that influence or cause migration and dispersal should be identified concerning intrinsic factors. For the analysis of migration ability, it is necessary to study effects of changes in the magnetic field on the migration ability of seabirds and fish, interspecific differences in spatiotemporal migration ability, and factors that influence the migration success rate. Regarding extrinsic factors, research studies on effects of anthropogenic disturbances such as fishery and offshore wind farm and global climate change on the migration and dispersal patterns of marine animals are needed. Finally, integrated studies on the migration of seabirds and fish directly or indirectly affecting each other in various ecological aspects are required.

Spatio-Temporal Characteristics of Droughts in Korea: Construction of Drought Severity-Area-Duration Curves (가뭄의 시공간적 분포 특성 연구: 가뭄심도-가뭄면적-가뭄지속기간 곡선의 작성)

  • Kim, Bo Kyung;Kim, Sang Dan;Lee, Jae Soo;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.69-78
    • /
    • 2006
  • The rainfall depth-area-duration analysis which is used to characterize precipitation extremes for specification of so-called design storms, provides a basis for evaluation of drought severity when storm depth is replaced by an appropriate measure of drought severity. So we propose a method for constructing drought severity-area-duration curves in this study. Monthly precipitation data over the whole Korea are used to compute SPI. Such SPIs are abstracted to several independent spatial components from EOF analysis. Using Kriging method, these spatial components are used to constitute grid-based SPI data set over the whole Korea including Jeju island with $6km{\times}6km$ resolution. After identifying main drought events, the drought severity-area-duration curves for these events over 32-year period of record are finally constructed. As a result, such curves show the similar shape with storm-based curves in the sense that the drought severity (or rainfall depth) is inversely proportional to drought area from the curves, but drought-based curves are different from storm-based curves in the sense that the drought severity decreasing rate with respect to drought area is much less than depth decreasing rate.