• 제목/요약/키워드: 시공간 패턴 탐사

검색결과 23건 처리시간 0.028초

GIS-AMR 시스템에서 시공간 데이터마이닝 기법을 이용한 전력 소비 패턴의 분석 및 예측 (Analysis and Prediction of Power Consumption Pattern Using Spatiotemporal Data Mining Techniques in GIS-AMR System)

  • 박진형;이헌규;신진호;류근호
    • 정보처리학회논문지D
    • /
    • 제16D권3호
    • /
    • pp.307-316
    • /
    • 2009
  • 이 논문에서는 자동 원격 검침(AMR) 시스템에서 수집되는 전력 사용량 데이터의 분석 결과를 실세계에 적용하기 위하여 시간과 공간의 변화에 따른 전력 소비 패턴의 주기성 탐사를 위한 시공간 데이터마이닝 기법을 제안하였다. 첫째, 고객의 전력 사용 목적에 따른 군집 분석을 위하여 분할 군집화 기법을 적용하였다. 둘째, 3차원 큐브 마이닝 기법을 적용하여 고객의 전력 소비 데이터가 갖는 시간 속성과 공간 속성에 대한 패턴을 탐색하였다. 셋째, 다양한 시간 도메인에서의 주기 패턴 발견을 위한 캘린더 패턴 마이닝 기법을 이용하여 탐사된 패턴들이 갖고 있는 시간 속성의 의미와 관계를 분석 및 예측하였다. 제안된 시공간 데이터마이닝 기법을 평가하기 위해 한국 전력 연구원에서 구축된 GIS-AMR 시스템에 의해 제공되는 고압 전력 소비 고객 3,256명의 2007년 1월부터 4월까지 총 266,426건의 데이터로부터 시간의 주기성 및 공간적 특성을 포함한 전력 소비 패턴을 분석하였다. 제안한 분석 기법을 통하여 특정 그룹에 속한 각각의 대표 프로파일이 시간과 공간상에서 갖는 주기성을 발견하였다.

이동 시퀀스의 빈발도를 이용한 최적 이동 패턴 탐사 기법 (A Method for Optimal Moving Pattern Mining using Frequency of Moving Sequence)

  • 이연식;고현
    • 정보처리학회논문지D
    • /
    • 제16D권1호
    • /
    • pp.113-122
    • /
    • 2009
  • 기존의 패턴 탐사 기법들은 제한된 시간 및 공간영역에서 발생하는 다양한 이동 패턴들 중 단순히 사용자 요구에 적합할 것으로 추정되는 불특정한 빈발 이동 패턴만을 탐사하기 때문에 특정지점들 간의 최적 이동 경로나 정해진 시간 내의 스케줄링 경로 탐색과 같은 복합적인 시간 및 공간 제약 조건을 갖는 최적 이동 패턴을 탐사하는 문제에는 적용하기 어렵다. 이에 본 논문에서는 방대한 이동 객체의 이력 데이터 집합으로부터 복합적인 시간 및 공간 제약을 갖는 최적 이동 패턴을 탐사하는 문제를 보이고, 적용 가능한 위치 기반 서비스로서 최적 이동 경로에 해당하는 패턴을 탐색하기 위한 새로운 패턴 탐사 기법인 STOMP-F를 제안한다. 제안된 기법은 특정한 지점들 사이를 이동한 객체의 패턴들 중 객체가 가장 빈번하게 이동한 경로를 탐색하여 최적 경로로 결정하는 패턴 빈발도를 이용한 탐색 방법으로, 최적 이동 패턴 탐사 과정의 이동 시퀀스 생성 단계에서 객체의 위치 값과 공간영역 간의 위상 관계를 고려하여 이동 객체의 위치 속성에 대한 최하위 수준에서의 공간 일반화를 통해 보다 효율적으로 패턴 탐사를 수행할 수 있다. 제안 방법을 Dijkstra 알고리즘과 $A^*$ 알고리즘을 대상으로 실험 평가한 결과 $A^*$ 알고리즘의 휴리스틱 가중치에 따라 차이는 있으나 연산 처리 시간을 기준으로 타 알고리즘들 보다 효과적임을 알 수 있다.

초분광 영상 기반 저수심 하천 하상재료 및 수심 계측 기법 개발 (Fluvial Hyperspectral Image Analysis for Identifying Bed Materials and Bathymetry in Shallow Stream)

  • 유호준;김동수;김서준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.101-101
    • /
    • 2016
  • 하천원격탐사는 원격탐사의 하위 개념으로서 계측하고자 하는 대상인 하천이나 호소 수체에서 발생하는 빛의 반사, 복사 또는 방출되는 양을 획득하고 분석하여 수리량, 지형 등 하천 조사에 활용하는 기법이다. 일반적으로 원격탐사는 주로 위성영상 자료를 활용하여 수행되어 자료취득비용이 고가이고 해외 위성자료에 의존하여 시공간적인 해상도가 매우 낮아 유역에 비해 공간적인 규모가 작고 변동 시간이 짧은 하천에 적용하는 데 한계가 있어 왔다. 또한, 단순한 사진촬영으로 도출할 수 있는 정보에 한계가 있고 자료를 저장 및 분석할 수 있는 기법도 부족하여 하천조사에 원격탐사를 활용한 사례가 드물었다. 그러나, 최근 드론과 같은 운반체 기술이 획기적으로 개선되고 있고 다양한 영상촬영장비의 개발과 IT기술의 발전으로 인해 위성영상에 비해 시공간적 해상도가 매우 정밀한 자료를 저렴한 비용으로 획득 가능해졌다. 또한, 매우 조밀한 파장대로 세분된 빛의 세기를 측정할 수 있는 초분광 영상을 이용한 원격탐사기법도 하천과 같은 좁은 영역에 적용이 가능해졌다. 초분광영상은 가시광선 외에 자외선과 적외선 영역에 해당하는 반사광을 200개 이상의 조밀한 파장대로 나누어 측정할 수 있어 수리량, 하상, 식생 등 하천 수체와 관련된 정보를 조사할 가능성이 증가하였다. 본 연구에서는 하천 수체에서 취득한 초분광 영상을 이용하여 하천특성과의 상관관계를 규명하고 이를 통해 초분광 영상 기반의 하천특성 계측 기법을 개발하고자 하였다. 드론과 같은 항공영상에 적용하기 전에, 우선 지상에서 측정된 초분광 영상과 하상재료 및 수심과의 상관관계를 규명하여 초분광 영상의 하천조사로의 사용 가능성을 점검해 보았다. 폭 10m, 수심 1m의 저수심의 소하천에 적용한 결과, 초분광 영상의 표준화 및 패턴 분석을 통해 수중에 위치한 하상재료를 구분할 수 있었고 주성분분석 등을 통해 수심과 상관성도 일부 도출되어 하천조사에 초분광영상이 활용될 수 있음을 확인하였다.

  • PDF

빈발도와 가중치를 이용한 서비스 연관 규칙 마이닝 (Mining Association Rule on Service Data using Frequency and Weight)

  • 황정희
    • 디지털콘텐츠학회 논문지
    • /
    • 제17권2호
    • /
    • pp.81-88
    • /
    • 2016
  • 일반적인 빈발패턴 탐사 방법은 항목의 빈발도만을 고려한다. 그러나 유용한 정보를 추출하는 데 있어 빈발도와 더불어 고려해야 하는 것은 빈발항목이 아니더라도 연관된 항목이 주기적으로 함께 발생한다면 시기나 시간에 따라 관심의 중요도가 변화하는 것을 고려해야 한다. 즉, 시간에 따라 사용자가 요구하는 서비스의 중요도는 다르므로 각 서비스 항목에 대한 중요도의 값을 고려하여 마이닝 하는 방법이 필요하다. 본 논문에서는 서비스 온톨로지 기반으로 가중치를 이용한 서비스 빈발 패턴을 추출하는 마이닝 기법을 제안한다. 제안하는 기법은 시공간 상황을 기반으로 서비스의 중요도를 고려한 가중치를 부여하여 연관 서비스를 발견한다. 새롭게 탐사되는 서비스는 저장되어 있는 서비스 규칙과의 새로운 조합을 통해 사용자에게 최적의 서비스 정보를 제공할 수 있는 기반이 된다.

적조의 공간적 분포 특성과 해수온 변화 (The Specific Character of Spatial Distribution of Red Tide and Sea Surface Temperature)

  • 정종철;윤홍주;서영상
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2005년도 GIS/RS 공동 춘계학술대회
    • /
    • pp.237-241
    • /
    • 2005
  • 본 연구에서는 한국 남해해역의 해양환경 중 해수표면온도의 변화와 Cochlodinium polykrikoides 적조의 시공간 분포가 밀접한 관련성을 가지고 있음을 파악하였다. GIS와 원격탐사기술은 한국 중남부해역에 적용되었고, 이 지역은 매년 하계에 적조가 최초로 발생하는 지역이다. 해수표면온도를 포함한 적조의 이동 경향을 비교하기 위해 현장조사에 의한 적조 분포가 조사선에 의해 수집되어졌다. 또한, 적조의 위성영상과 해수표면수온 분포를 Landsat 위성자료를 통해 획득하였다. 위성자료에 의해 추정된 적조의 분포와 해수표면온도분포는 유사한 패턴을 나타내고 있음을 알 수 있었다. 여름철에 한반도 남동부 연안해역에서 나타나는 적조의 분포와 이동경향은 이 지역의 해수온도 분포의 시공간적인 분포에 밀접한 관계가 있다.

  • PDF

시간적 추론이 적용된 위치 기반 서비스에 관한 연구 (The study about location based service that temporal reasoning was applied)

  • 김제민;박영택
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (1)
    • /
    • pp.91-93
    • /
    • 2004
  • 차세대 정보통신 기술의 가장 중요한 패러다임으로 '유비쿼터스 컴퓨팅' 이 새롭게 주목받고 있다 유비쿼터스 환경에서의 서비스 지원 시스템을 개발하기 위한 중요한 문제 중의 하나는 이동 객체(사용자)의 시간과 이벤트의 관계를 파악하고 위치 이동 데이터로부터 시공간 이동 패턴을 탐사하는 것이다. 본 논문에서는 유비쿼터스 환경 내에서 사용자에게 시간과 관련된 서비스를 적절히 제공하기 위해서 다음과 같은 연구를 한다. 첫째, 서비스 관점에서의 시간적 추론(Temporal Reasoning)이다. 각 사용자들은 각자의 취향을 가지고 있으며 이는 시간과 밀접한 관계를 가지고 있다. 시간과 관련된 사용자의 취향이 기록된 각 사용자 프로파일을 기반으로 서비스 지원 시스템은 적절한 서비스를 제공할 수 있다. 둘째, 사용자의 취향을 기록하기 위한 시간적 추론(Temporal Reasoning)이 다. 기록된 내 용들은 사용자 프로파일 (User Profile)을 생성하는데 도움을 준다.

  • PDF

레벨 교차 트리를 이용한 연관 서비스 탐사 (Association Service Mining using Level Cross Tree)

  • 황정희
    • 디지털콘텐츠학회 논문지
    • /
    • 제15권5호
    • /
    • pp.569-577
    • /
    • 2014
  • 사용자는 시간적, 공간적 상황에 따라 다양한 정보를 요구한다. 상황변화에 맞는 서비스 정보를 제공하는 것이 중요하다. 그러므로 사용자의 행동 및 서비스 이력의 최신정보를 기반으로 마이닝하여 최적의 서비스를 사용자에게 제공해야 한다. 본 논문에서는 시공간 정보 및 서비스 정보 온톨로지를 기반으로 사용자의 서비스 사용 이력을 이용하여 연관 있는 서비스 규칙을 탐색하기 위한 마이닝 방법을 제안한다. 이를 위해 서비스 온톨로지 계층에 대한 레벨 교차 기반의 연관 서비스 규칙을 발견한다. 제안된 마이닝 방법은 일정한 시간과 공간에 대한 시기별, 위치별, 연령별에 대한 연관 서비스 패턴을 발견할 수 있으므로 사용자의 상황변화에 양질의 서비스를 제공할 수 있는 기반이 된다.

지난 100년 동안 서울시에 발생한 강한 열파 패턴과 노인사망자에 미치는 영향 (Patterns of Strong Heat Waves within the Seoul Metropolitan Area and Its Impacts on Elderly Mortality Based on the Last 100 Year Observations)

  • 최광용
    • 대한지리학회지
    • /
    • 제45권5호
    • /
    • pp.573-591
    • /
    • 2010
  • 이 연구에서는 지난 100년(1908~2007) 동안 서울에서 발생한 열파의 변화추세와 극심한 열파 발생 시 도심내 열환경과 사망자의 시공간적 패턴을 분석하고자 한다. 최근의 온난화 경향에도 불구하고 여름철 강수량증가에 의해 서울시의 열파 발생빈도 및 강도에는 뚜렷한 변화경향이 관찰되지 않는다. 전례 없이 강한 열파가 발생한 1994년 7월의 자동기상관측 및 Landsat TM 위성 영상 추출 열분포 자료들은 도심내 형성되는 고온의 열환경에 의해 노인 질병 사망자 수가 더욱 증가하였음을 잘 보여준다. 이 연구는 차후 도심 정비시 열환경 분포를 고려해야 하는 생리기후학적 근거를 제시하고 있다.

다종 위성자료와 기계학습을 이용한 고해상도 표층 염분 추정 (Estimation of High Resolution Sea Surface Salinity Using Multi Satellite Data and Machine Learning)

  • 성태준;심성문;장은나;임정호
    • 대한원격탐사학회지
    • /
    • 제38권5_2호
    • /
    • pp.747-763
    • /
    • 2022
  • 해양 염분은 전 지구 규모에서 해수 순환에 영향을 미칠 뿐만 아니라, 연·근해 지역 저염분수가 어족자원 및 수산업에 피해를 줄 수 있는 등 해양 식생환경의 변화를 줄 수 있다. 해수의 표면 특성인 sea surface salinity (SSS)에 따라 마이크로웨이브 영역의 방사율이 달라지며, 이를 통해 Soil Moisture Active Passive (SMAP) 등 위성 센서를 활용한 SSS 산출물이 제공되고 있다. 하지만 마이크로파 위성 센서 기반의 SSS 산출물은 낮은 시공간해상도로 자료를 생산하며, 연안지역과 고위도 지역에서 정확도가 낮다. 이러한 이유로 연·근해 지역 SSS의 상세한 시공간적 변화를 관측하기에는 적합하지 않다. 본 연구에서는 Jang et al. (2022)에서 제시한 기계학습 기반의 개선된 SMAP SSS (SMAP SSS (Jang))를 참조자료로 활용하여, 정지궤도해색센서(Geostationary Ocean Color Imager, GOCI) 영상으로부터 고해상도 SSS를 추정하는 Light Gradient Boosting Machine (LGBM) 기반의 모델을 개발하였다. 3가지 입력변수 조합을 테스트하였고, Multi-scale Ultra-high Resolution Sea Surface Temperature (SST) 자료가 추가된 scheme 3가 가장 높은 정확도를 보였다(R2 = 0.60, RMSE = 0.91 psu). 이를 바탕으로 본 연구영역에서 SST가 SSS 모의에 효과적인 환경변수로 작용함을 보였다. 본 연구에서 제시한 LGBM 기반의 GOCI SSS는 SMAP SSS (Jang)와 비슷한 시공간적 패턴을 보였지만, 더 높은 공간해상도를 바탕으로 SSS의 보다 상세한 공간적 분포와 더불어 SMAP SSS (Jang)에서 산출하지 않는 연안 지역의 정보까지 모의하였다. 또한, 중국 남방지역에 대홍수가 발생하였던 2020년 8월을 대상으로 양자강 유출수(Changjiang Diluted Water)의 거동을 분석한 결과, GOCI SSS는 한국 해양수산연구원의 보도자료와 비교하여 일관성 있는 시공간적 변화를 보였다. 본 연구의 결과로 연안 지역의 저염수 뿐 아니라, 원해 지역에서 광학위성 신호를 활용한 고해상도 SSS 산출의 가능성을 제시하였다.

Two-stream Convolutional Long- and Short-term Memory 모델의 2001-2021년 9월 북극 해빙 예측 성능 평가 (Performance Assessment of Two-stream Convolutional Long- and Short-term Memory Model for September Arctic Sea Ice Prediction from 2001 to 2021)

  • 지준화
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1047-1056
    • /
    • 2022
  • 지구 온난화의 중요한 지시자인 북극의 바다 얼음인 해빙은 기후 시스템, 선박의 항로 안내, 어업 활동 등에서의 중요성으로 인해 다양한 학문 분야에서 관심을 받고 있다. 최근 자동화와 효율적인 미래 예측에 대한 요구가 커지면서 인공지능을 이용한 새로운 해빙 예측 모델들이 전통적인 수치 및 통계 예측 모델을 대체하기 위해 개발되고 있다. 본 연구에서는 북극 해빙의 전역적, 지역적 특징을 학습할 수 있는 two-stream convolutional long- and short-term memory (TS-ConvLSTM) 인공지능 모델의 북극 해빙 면적이 최저를 보이는 9월에 대해 2001년부터 2021년까지 장기적인 성능 검증을 통해 향후 운용 가능한 시스템으로써의 가능성을 살펴보고자 한다. 장기 자료를 통한 검증 결과 TS-ConvLSTM 모델이 훈련자료의 양이 증가하면서 향상된 예측 성능을 보여주고 있지만, 최근 지구 온난화로 인한 단년생 해빙의 감소로 인해 해빙 농도 5-50% 구간에서는 예측력이 저하되고 있음을 보여주었다. 반면 TS-ConvLSTM에 의해 예측된 해빙 면적과 달리 Sea Ice Prediction Network에 제출된 Sea Ice Outlook (SIO)들의 해빙 면적 중간값의 경우 훈련자료가 늘어나더라도 눈에 띄는 향상을 보이지 않았다. 본 연구를 통해 TS-ConvLSTM 모델의 향후 북극 해빙 예측 시스템의 운용 가능 잠재성을 확인하였으나, 향후 연구에서는 예측이 어려운 자연 환경에서 더욱 안정성 있는 예측 시스템 개발을 위해 더 많은 시공간 변화 패턴을 학습할 수 있는 방안을 고려해야 할 것이다.