• 제목/요약/키워드: 시계열 자료

검색결과 1,498건 처리시간 0.03초

Data screening을 이용한 우리나라 연강수량 자료의 시계열 특성 분석 (Stationary test of Annual precipitation in Korea using Data Screening)

  • 임가균;강동호;정세진;김병식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.231-231
    • /
    • 2019
  • 수문자료는 수문과정을 이해하고 그 특성을 파악하여 장래 예견되는 자연재해로부터 인간의 생명과 재산을 보호하는데 있어서 매우 중요하다. 특히 수자원 계획 수립 및 대규모 수공구조물 설계 시 수문학적 설계기준이 되는 강수량 및 유출량과 같은 설계 수문량을 정확하게 산정하기 위해서는 장기간의 과거자료가 필요하다. 그러나 한국의 경우 수문자료 관측을 위한 관측소가 대부분 근래에 설치되어 자료의 기록기간이 짧은 실정이며, 수문자료의 질적인 면에서의 신뢰성이 의심되는 경우가 많아 수문 시계열 자료의 특성을 파악하는 것이 더욱 중요하다. 한국의 경우 수문 시계열 자료가 정상성이나 독립성을 지니고 있다고 가정하고 수문분석을 실시하는 경우가 많기 때문에 정상성을 가정한 수문분석으로 인해 왜곡된 결과를 얻을 수 있는 가능성이 있다. 본 논문에서는 한국의 기상청 63개의 기상관측소 중 45년 이상의 장기간의 관측 자료를 가지고 있는 37개의 기상관측소의 연강수량 자료를 대상으로 Data Screening 방법을 이용하여 정상성 분석을 실시하였다. 분석결과 37개소의 기상관측소 연 강수량의 시계열 자료 중 4개 관측소의 연강수량 자료에서 경향성을 보였으며 평균과 분산의 시간변동성을 의미하는 안정성은 22개 관측소 연강수량 자료에서 불안정성을 나타내었다. 또한 4개 관측소 연강수량 자료에서 지속성을 나타내었다. 본 논문에서는 경향성이 없고 평균과 분산의 안정성이 존재하며 지속성을 보이지 않는다는 조건을 동시에 만족하는 연 강수량 시계열 자료만을 정상성이 있다고 판단하였으며 분석 결과, 37개 관측소 중 23개 관측소(약 62%) 연 강수량자료가 비정상성을 나타냄을 확인할 수 있다.

  • PDF

연안암반대수층의 해수침투경향성 파악을 위한 전기전도도 시계열 분석과 예측 (Time Series Analysis and Forecasting of Electrical Conductivity in Coastal Aquifers)

  • 주정웅;여인욱
    • 자원환경지질
    • /
    • 제50권4호
    • /
    • pp.267-276
    • /
    • 2017
  • 전라남도는 연안지역은 농업활동과 상수도의 미보급으로 인하여 지하수에 크게 의존하고 있다. 지하수의 과다사용은 지하수위 저하를 일으키며 그로 인한 해수침투가 발생할 가능성이 매우 높다. 따라서 지하수 사용에 따른 해수침투 관리가 매우 필요한 지역이다. 전라남도 무안군의 연안암반대수층에서 측정된 EC 자료를 이용하여 해안가 대수층에 적합한 시계열 모형을 구축하고, 해수침투의 지표인 EC를 예측하고자 시계열 분석을 수행하였다. 1년 이상 측정한 EC 시계열 자료는 짧은 주기적인 변동과 함께 추세적으로 증가하는 비정상 시계열의 특성을 보였다. 시계열 분석을 통해 시계열 모형 식별 결과 ARIMA 모형과 계절적인 요인을 고려 할 수 있는 SARIMA 모형 이 적합한 것으로 나타났다. 하지만 두 모형 적용한 결과, EC의 주기적인 변동으로 인해 ARIMA보다는 EC 자료의 변동 특성을 잘 반영한 SARIMA 모형이 예측에 있어서 유리한 것으로 나타났다. 위와 같이 시계열 분석은 암반 대수층에서 해수침투로 인한 EC의 변화를 예측하는데 있어 유용한 것으로 나타났다.

신경망을 이용한 시계열 패널자료의 예측 (Prediction for Time Series Panel Data using Neural Network)

  • 김인규
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2012년도 제45차 동계학술발표논문집 20권1호
    • /
    • pp.263-264
    • /
    • 2012
  • 본 논문은 여러 개의 독립적인 시계열로 구성된 시계열 패널 자료를 이용하여 비선형 모형인 GRCA모형과 신경망을 이용하여 예측값을 구하여 서로 비교 분석하고자 한다. 먼저 GRCA모형에 대하여 연구하고 신경망의 구조와 예측값을 구하기 위한 여러 가지 변환함수를 유도한다. 단기 예측에서는 신경망 방법의 예측값이 더 좋았고, 장기예측에서는 비선형모형을 이용한 예측값이 더 좋은 것으로 나타났다.

  • PDF

하천의 일TOC 시계열 자료의 비선형 동역학적 거동 분석 (Analysis of Nonlinear Dynamical Behavior for the Daily TOC Time Series in a River)

  • 오창열;진영훈;박성천;정우철
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.1032-1036
    • /
    • 2006
  • 본 연구에서는 영산강 본류를 대표하는 나주지점을 대상으로 하여, 해당 지점에서 자동 측정되고 있는 수질 항목들 중에서 총유기탄소(TOC: Total Organic Carbon)의 시계열 자료에 대한 비선형 동역학적 거동을 파악하고자 하였다. 1994년 낙동강에서의 수질오염 사고 이후 4대강 유역에서 설치.운영되고 있는 수질자동 측정망의 TOC 자료를 일자료로 환산하여 사용하였으며, 시계열 자료에 비선형 동역학적(카오스적) 특성이 존재하는지를 알아보기에 앞서 자료의 전처리 과정으로써 3가지의 잡음제거 방법을 적용하였다. 잡음이 제거된 시계열 자료에 비선형 동역학적 거동의 파악을 위해 보편적으로 사용되고 있는 상관차원분석을 실시하였다. 또한 상관차원분석 결과 비선형 동역학적 거동을 나타내는 것으로 판별된 자료에 대하여 그 양상을 가시적으로 알아보기 위해 지체시간$(\tau)$을 적용하여 3차원 위상공간에 도시하였다. 본 연구의 결과, 나주지점에서 측정되고 있는 총유기탄소에 대해 비선형 잡음제거 방법을 적용한 자료가 비선형 동역학적 거동을 내재하고 있는 것으로 나타났으나, 이를 위상공간에 재건하였을 경우 이상한 끌개(strange attractor)의 뚜렷한 구조가 보이지 않았다. 그러나 상관차원분석 결과 잡음이 제거된 자료가 카오스적 특성을 보이므로, 자료의 단기예측을 위한 방법에 기초적인 정보를 제공할 수 있을 것으로 기대된다.

  • PDF

장기간 의존 시계열에서 붓스트랩을 이용한 장기적 분산 추정 (Bootstrap estimation of long-run variance under strong dependence)

  • 백창룡;권용
    • 응용통계연구
    • /
    • 제29권3호
    • /
    • pp.449-462
    • /
    • 2016
  • 본 논문은 시계열 분석의 추론에서 매우 중요한 역할을 하는 장기적 분산에 대해서 붓스트랩을 이용한 추정을 다룬다. 본 논문은 기존의 방법을 두가지 측면에서 확장한다. 첫째, 단기억 시계열에서의 장기적 분산 추정을 확장하여 자료의 의존성이 매우 강한 장기간 의존 시계열에서 붓스트랩을 이용한 장기적 분산의 추정에 대해서 논의한다. 또한 장기간 의존 시계열이 평균변화모형과 매우 쉽게 잘 혼동됨이 잘 알려져 있기에 이를 해결하기 위해서 쌍봉형 커널을 이용한 추세 추정 및 붓스트랩의 블럭을 결정하는 방법을 제안한다. 모의 실험결과 제안한 방법이 매우 유의하였으며 북반구 평균 온도 변화 자료 분석으로 실증 자료 예제도 아울러 제시하였다.

재현그림을 통한 우리나라 환율 자료에 대한 탐색적 자료분석 (Exploratory data analysis for Korean daily exchange rate data with recurrence plots)

  • 장대흥
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권6호
    • /
    • pp.1103-1112
    • /
    • 2013
  • 탐색적 자료분석에서는 자료를 통계적 모형에 바로 적합시키기 보다는 자료를 있는 그대로 보려는 데 주안점을 둔다. 우리는 시계열 자료에 대한 그래픽 탐색적 자료분석방법의 하나로서 재현그림을 사용할 수 있다. 재현그림의 장점은 통계모형에 대한 가정 없이 시계열 자료의 구조적 패턴을 확인할 수 있고 이 패턴을 통하여 탐색적으로 시계열 데이터의 구조 변화점을 한 눈에 확인할 수 있다는 데 있다.

삼각퍼지수를 이용한 시계열모형 (Time Series Using Fuzzy Logic)

  • 정혜영;최승회
    • Communications for Statistical Applications and Methods
    • /
    • 제15권4호
    • /
    • pp.517-530
    • /
    • 2008
  • 본 논문은 시간의 흐름에 따라 일정한 간격으로 관측된 시계열자료에 대한 통계적인 관계를 추정하기 위하여 삼각퍼지수를 이용한 퍼지시계열모형을 소개한다. 모든 관측치를 포함하는 전체집합을 분할하는 구간을 자료의 빈도수에 따라 결정하고 연속되는 두 시점에서 퍼지수가 일치하는 경우에는 관측된 자료의 차에 대한 정보를 이용하여 제안된 퍼지시계열모형을 추정한다. 예제를 이용하여 제안된 퍼지시계열모형의 정확성을 일반적인 시계열모형과 여러 가지 방법으로 추정된 퍼지시계열모형과 비교한다.

다중 유사 시계열 모델링 방법을 통한 예측정확도 개선에 관한 연구 (A Study on Improving Prediction Accuracy by Modeling Multiple Similar Time Series)

  • 조영희;이계성
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권6호
    • /
    • pp.137-143
    • /
    • 2010
  • 본 연구에서는 시계열 자료처리를 통해 예측정확도를 개선시키는 방안에 대해 연구하였다. 단일 예측 모형의 단점을 개선하기 위해 유사한 시계열 자료를 선정하여 이들로부터 모델을 유도하였다. 이 모델로부터 유효 규칙을 생성해내 향후 자료의 변화를 예측하였다. 실험을 통해 예측정확도에 있어 유의한 수준의 개선효과가 있었음을 확인하였다. 예측모델 구성을 위해 고정구간과 가변구간을 두고 모델링하여 고정구간, 창이동, 누적구간 방식으로 구분하여 예측정확도를 측정하였다. 이중 누적구간 방식이 가장 정확도가 높게 나왔다.

금융 빅 데이터를 이용한 주식수익률 행태 분석 (An Analysis of Stock Return Behavior using Financial Big Data)

  • 정헌용;김상식
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.708-710
    • /
    • 2014
  • 최근 금융 분야에서는 빅 데이터를 이용하여 주가예측 모형을 만들어내고 있으며, 특히 금융 시계열 자료의 변동성 집중 현상을 금융 빅 데이터를 이용하여 분석함으로써 세계 주식시장의 동조화 현상을 분석하고 있다. 본 논문에서는 한국과 중국의 일별 주가지수수익률과 일중 주가지수수익률을 이용하여 이들 2개 국가의 대표적인 주가지수 시계열 데이터에 변동성 집중 현상이 존재하는지를 보다 세밀하게 추적하여 양국 주식시장의 동조화 현상을 분석한다. 분석 결과, 한국의 KOSPI와 중국의 Shanghai 종합주가지수의 지수수익률 시계열 자료는 단위근이 존재하지 않으며, 변동성 집중 현상을 보이는 것으로 나타났다. 또한 한국보다는 중국 주식시장의 변동성 집중현상이 보다 강하게 나타나며, 이러한 현상은 일중 주가지수수익률 시계열 자료에서 보다 두드러지게 나타났다.

  • PDF

평활된 주기도를 이용한 강수량자료의 군집화 (Classification of Precipitation Data Based on Smoothed Periodogram)

  • 박만식;김희영
    • 응용통계연구
    • /
    • 제21권3호
    • /
    • pp.547-560
    • /
    • 2008
  • 스펙트럼 밀도함수(spectral density function)는 시계열 자료가 정상성(stationarity)을 만족하는 경우에 주파수 영역(frrqllrnFr domain)에서 시계열 자료의 자기공분산함수(auto-covariance function)을 결정짓는 함수이고, 평활된 주기도(smoothed periodogram)는 스펙트럼 밀도함수의 일치 추정량(consistent estimator)이 됨이 잘 알려져 있다. 본 연구에서는 시계열 자료를 평활된 주기도를 이용하여 군집화하는 방법을 소개한다. 최근 김희영과 박만식 (2007)의 연구에 의하면 이 거리는 정상시계열들을 효율적으로 분류하고 있음을 알 수 있다. 본 연구는 시계열 자료를 분류하는데 사용된 기존의 거리들을 간략히 소개하고, 우리나라 22개 지역에서 1987년 1월부터 2007년 12월까지 측정한 월별 강수량 자료를 대상으로 평활된 주기도 거리를 이용하여 지역을 군집화한다.