1 |
Chen, W. (2011). Use of recurrence plot and recurrence quantification analysis in Taiwan unemployment rate time series. Physica A, 390, 1332-1342.
DOI
ScienceOn
|
2 |
Eckmann, J. P., Kamphorst, S. O. and Ruelle, D. (1987). Recurrence plots of dynamical systems. Europhysics Letters, 5, 973-977.
|
3 |
Guhathakurta, K., Bhattacharya, B. and Chowdhury, A. R. (2010). Using recurrence plot analysis to distinguish between endogenous and exogenous stock market crashes. Physica A, 389, 1874-1882.
DOI
ScienceOn
|
4 |
Iwanski, J. S. and Bradley, E. (1998). Recurrence plots of experimental data: To embed or not to embed. Chaos, 8, 861-871.
DOI
ScienceOn
|
5 |
Jang, D. H. (2009). Recurrence plots as an exploratory graphical tool for evaluating randomness. The Korean Journal of Applied Statistics, 22, 1153-1165.
과학기술학회마을
DOI
ScienceOn
|
6 |
Jang, D. H. (2013). Exploratory data analysis for Korean stock data with recurrence plots. The Korean Journal of Applied Statistics, 26, 807-819.
과학기술학회마을
DOI
ScienceOn
|
7 |
Addo, P. A., Billio, M. and Guegan, D. (2013). Nonlinear dynamics and recurrence plots for detecting financial crisis. North American Journal of Economics and Finance, in press.
|
8 |
Belaire-Franch, J., Contreras, D. and Tordera-Lledo, L. (2002). Assessing nonlinear structures in real exchange rates using recurrence plot strategies. Physica D, 171, 249-264.
DOI
ScienceOn
|
9 |
Kim, B. M. and Kim, J. H. (2013). Time series models for daily exchange rare data. The Korean Journal of Applied Statistics, 26, 1-14.
DOI
ScienceOn
|
10 |
Lee, O. and Kim, M. J. (2006). Long memory and covariance stationarity of asymmetric power FIGARCH model. Journal of the Korean Data & Information Science Society, 17, 983-990.
과학기술학회마을
|
11 |
Marwan, N., Romano, M. C., Thiel, M. and Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics Reports, 438, 237-329.
DOI
ScienceOn
|
12 |
Matassini, L., Kantz, H., Holyst, J. and Hegger, R. (2002). Optimizing of recurrence plots for noise reduction. Physical Review E, 65, 021102.
DOI
|
13 |
Mindlin, G. M. and Gilmore, R. (1992). Topological analysis and synthesis of chaotic time series. Physica D, 58, 229-242.
DOI
ScienceOn
|
14 |
Shim, J. Y. and Lee, J. T. (2010). Estimation of nonlinear GARCH-M model. Journal of the Korean Data & Information Science Society, 21, 831-839.
과학기술학회마을
|
15 |
Thiel, M., Romano, M. C., Kurths, J., Meucci, R., Allaria, E. and Arecchi, F. T. (2002). Influence of observational noise on the recurrence quantification analysis. Physica D, 171, 138-152.
DOI
ScienceOn
|
16 |
Zbilut, J. P., and Webber Jr., C. L. (1992). Embeddings and delays as derived from quantification of recurrence plots. Physics Letters A, 171, 199-203.
DOI
ScienceOn
|
17 |
Zbilut, J. P., Zaldivar-Commenges, J. M. and Strozzi, F. (2002). Recurrence quantification based Liapunov exponents for monitoring divergence in experimental data. Physics Letters A, 297, 173-181.
DOI
ScienceOn
|