Browse > Article
http://dx.doi.org/10.5351/KJAS.2008.21.3.547

Classification of Precipitation Data Based on Smoothed Periodogram  

Park, Man-Sik (Dept. of Preventive Medicine, Korea University)
Kim, Hee-Young (Dept. of Preventive Medicine, Korea University)
Publication Information
The Korean Journal of Applied Statistics / v.21, no.3, 2008 , pp. 547-560 More about this Journal
Abstract
It is well known that spectral density function determines auto-covariance function of stationary time-series data and smoothed periodogram is a consistent estimator of spectral density function. Recently, Kim and Park (2007) showed that smoothed- periodogram based distances performs very well for the classification. In this paper, we introduce classification methods with smoothed periodogram and apply the approaches to the monthly precipitation measurements obtained from January, 1987 through December, 2007 at 22 locations in South Korea.
Keywords
Periodogram; smoothing; spectral density; clustering; precipitation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pattarin, F., Paterlini, S. and Minerva, T. (2004). Clustering financial time series: An application to mutual funds style analysis, Computational Statistics & Data Analysis, 47, 353-372   DOI   ScienceOn
2 Piccolo, D. (1990). A distance measure for classifying ARIMA models, Journal of Time Series Analysis, 11, 153-164
3 Shumway, R. H. (2003). Time-frequency clustering and discriminant analysis, Statistics & Probability Letters, 63, 307-314   DOI   ScienceOn
4 Kalpakis, K., Gada, D. and Puttagunta, V. (2001). Distance measures for effective clustering of ARIMA time series, In Proceedings of the 2001 IEEE international conference on data mining, 273-280
5 Caiado, J., Crato, N. and Pena, D. (2006). A periodogram-based metric for time series classification, Computational Statistics & Data Analysis, 50, 2668-2684   DOI   ScienceOn
6 Corduas, M. and Piccolo, D. (2008). Time series clustering and classification by the autoregressive metric, Computational Statistics and Data Analysis, 52, 1860-1872   DOI   ScienceOn
7 Fu, T. C., Chung, F. L., Ng, V. and Luk, R. (2001). Pattern discovery from stock time series using self-organizing maps, KDD 2001 Workshop on Temporal Data Mining, August 26-29, San Francisco, 27-37
8 Galeano, P. and Pena, D. (2000). Multivariate analysis in vector time series, Resenhas, 4, 383-403
9 Goldstein, D. R., Ghosh, D. and Conlon, E. M. (2002). Statistical issues in the clustering of gene expression data, Statistica Sinica, 12, 219-240
10 이승호 (1993) 계량적 분석에 의한 한국의 강수지역구분, <지역과 환경>, 11, 1-15
11 Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods, Springer- Verlag, New York
12 문영수 (1990). 클러스터분석에 의한 한국의 강수지역 구분, Asia-Pacific Journal of Atmospheric Sciences, 26, 203-215
13 고정웅, 백희정, 권원태 (2005) 한반도 우기의 강수 특성과 지역 구분, Asia-Pacific Journal of Atmospheric Sciences, 41, 101-114
14 김성렬, 양진석 (1995) 한국의 온대 저기암성 강수지역 구분, <한국지역지리학회지>, 1, 45-60
15 김희영 , 박만식 (2007). Clustering time-series based on frequency domain, <한국통계학회 추계학술발표회 논문집>,73.
16 이동규, 박정균 (1999) 군집 분석을 이용한 남한의 여름철 강수지역구분, Asia-Pacific Journal of Atmospheric Sciences, 35, 511-518
17 Maharaj, E. A. (2000). Clustering of time series, Journal of Classification, 17, 297-314   DOI
18 Bartlett, M. S. (1946). On the theoretical specification and sampling properties of auto- correlated time series, Supplement to the Journal of the Royal Statistical Society, 8, 27-41   DOI   ScienceOn
19 Kakizawa, Y., Shumway, R. H. and Taniguchi, M. (1998). Discrimination and clustering for multivariate time series, Journal of the American Statstical Association, 93, 328-340   DOI
20 Liao, T. W. (2005). Clustering of time series data-a survey, Pattern Recognition, 38, 1857-1874   DOI   ScienceOn