Transactions of the Korean Society for Noise and Vibration Engineering
/
v.25
no.12
/
pp.888-894
/
2015
A new method for the simulation of the vehicle's interior road noise is proposed in the present study. The road noise model can synthesize road noise of a vehicle for varying driving speed within a range. In the proposed method, interior road noise is considered as a stochastic time-series, and is modeled by a nonstationary parametric model via two steps. First, each interior road noise signal, obtained from constant speed driving tests performed within a range of speed, is modeled as an autoregressive model whose parameters are estimated by using a standard method. Finally, the parameters obtained for different driving speeds are interpolated based on the varying driving speed to yield a time-varying autoregressive model. To model a full band road noise, audible frequency range is divided into an octave band using a wavelet filter bank, and the road noise in each octave band is modeled.
본 고에서는 체내 심실신호를 농하여 신경학적 분석 및 다형성의 측면에서 심실세동이 일어나는 것을 예측하는 분석 알고리즘을 설계하였다. 신경학적 측면에서는 시계열 신호의 Peak to Peak Interval을 예측법과 0.15Hz를 기준으로 HRV 신호의 AR Burg 모델링을 통하여 고주파성과 저주파성을 나누어 교감신경과 부교감신경의 활동성 통한 신경학적 예측법을 제시하였으며 또한 체내 심실신호의 비선형적 특성을 고려한 Fractal Dimension을 생성시킴으로서 주기성의 특성과 다형성 통한 예측법을 제시하였다. 체내 심전도를 기반으로 Simulation 하였으며 각 분석별 조합을 통하여 최적의 예측 구조를 찾고자 하였다. 의학적 의미가 있는 민감도와 특이도를 판별하였으며 예측을 위한 수행시간을 실험하였다. 이를 통하여 자율신경 활성도와 다형성 판별을 조합한 방법이 심실세동 예측을 위한 민감도의 측면에서 가장 우수함을 나타내었고 시뮬레이션을 위만 시뮬레이터(Simulator) UI(User Interface)를 제시하였다.
With a widespread of sensor-rich mobile devices, the analysis of human activities becomes more general and simpler than ever before. In this paper, we propose two deep neural networks that efficiently and accurately perform human activity recognition (HAR) using tri-axial accelerometers. In combination with powerful modern deep learning techniques like batch normalization and LSTM networks, our model outperforms baseline approaches and establishes state-of-the-art results on WISDM dataset.
Journal of the Society of Naval Architects of Korea
/
v.47
no.2
/
pp.242-247
/
2010
To consider effects of essential parameters of water impact pressure on dynamic structural responses of bow bottom structures, a parametric study for a ship bottom panel is carried out. The idealized pressure time history models were assumed by triangular and rectangular shapes in time domain. The main loading parameters are duration time and peak pressure value maintaining the same impulse value. The structural models for local bottom stiffened panels of a container ship are analysed. The natural frequency analysis and transient dynamic response analysis are performed using MSC/NASTRAN. Added mass effects of contacting water are considered and the pressure distributions are assumed to be uniform in the whole water contacting surface. The effects of loading parameters on the structural responses, especially maximum displacements, are considered. Besides the peak pressure value, effects of duration time correlated with natural frequencies are thought to be the important parameters.
Journal of The Korean Society of Agricultural Engineers
/
v.54
no.5
/
pp.91-102
/
2012
강우의 관측망 확장과 위성 자료 및 기후 모델을 이용한 격자 단위자료가 개발 및 보급됨에 따라 다양한 자료의 분야별 활용성에 대한 연구의 필요성이 제기되고 있다. 본 연구에서는 지역 기후 모델 산출물의 오차 보정을 위한 격자 관측자료의 활용성을 평가하였다. 또한 통합 분포형 수문모델을 이용하여, 보정한 기후모델 결과의 수문 모의를 위한 기후 입력 자료로써의 적합성을 검토하였다. 보정된 결과는 각 관측자료의 월별 평균 강우량과 공간 분포를 비교적 잘 재현하였다. 한편 연강우량 시계열에 있어 그 양상은 잘 재현된 가운데 보정되지 않은 오차를 일부 포함하는 것으로 나타났다. 이는 점 관측자료로부터 추정된 시험 지역내 172개 소유역에 대한 일평균 강우량 자료와 비교해 볼 때 관측자료의 형식이나 정확성보다 기후모델의 불확실성에 기인하는 것으로 판단된다. 수문 모의 결과, 격자 자료를 이용하여 보정한 강우 입력자료는 수문 모델의 검보정에 이용된 소유역 단위 강우 자료를 이용한 결과에 상응하는 활용성을 보여주었다. 또한 강우의 공간 분포를 고려하지 않고, 시험유역 전체에 대한 평균 강우량을 입력 자료로 이용한 결과를 통해 기후 자료의 공간 분포와 관측 밀도의 중요성을 확인하였다.
Journal of the Korean Society for Precision Engineering
/
v.11
no.1
/
pp.138-149
/
1994
This paper introduces a new monitoring technique which utilizes an adaptive signal processing for feature generation, coupled with a multilayered merual network for pattern recognition. The cutting force signal in face milling operation was modeled by a low order discrete autoregressive model, shere parameters were estimated recursively at each sampling instant using a parameter adaptation algorithm based on an RLS(recursive least square) method with discounted measurements. The influences of the adaptation algorithm parameters as well as some considerations for modeling on the estimation results are discussed. The sensitivity of the extimated model parameters to the tool state(new and worn tool)is presented, and the application of a multilayered neural network to tool state monitoring using the previously generated features is also demonstrated with a high success rate. The methodology turned out to be quite suitable for in-process tool wear monitoring in the sense that the model parameters are effective as tool state features in milling operation and that the classifier successfully maps the sensors data to correct output decision.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.135-135
/
2020
우리나라의 기후 자료는 일반적으로 기상청에서 발표하는 종관기상관측(ASOS)과 방재기상관측(AWS), 그리고 북한이 세계기상기구(WMO, World Meteorogical Organization)의 기상통신망(GTS)을 통해 보낸 북한기상관측(NKO)을 사용 할 수 있다. 그러나 이 중 40년 이상의 완전한 관측 자료를 얻을 수 있는 건 ASOS가 유일하지만 공간적인 표현에 한계를 갖고 있다. AWS는 관측소가 많다는 장점이 있지만 관측 기간이 길지 않고 이용 가능한 기간에도 관측이 연속적이지 못한 경우가 많다. NKO는 비록 27개의 관측소가 있지만 많은 데이터가 누락되어 일별 기후자료의 사용에 한계를 갖고 있다. 이러한 미관측 기간이나 관측 자료의 누락은 연속적인 시계열 자료분석을 기반으로 하는 수자원 모델링에 있어서 문제를 야기한다. 본 연구는 1973년부터 2019년까지 47년의 신뢰도 높은 한반도 일일 기후 자료를 구축하기 위해 다양한 방법론을 비교하였다. 추정에 사용한 방법은 총 7개로 EM algorithm for probabilistic principal components (PPCA-EM), Inverse distance weight method (IDWM), Nearest neighbor method (NNM), Multivariate normal copulas (Copula), Elastic net model (Elastic), Ordinary kriging (OK), Regularized principal components with EM algorithm (RPCA-EM)를 살펴보았다. 다양한 형태의 결측치를 가정하여 그 결과값을 비교하였고 이는 Root mean squared error(RMSE), Kling-Gupta efficiency(KGE), Nash-Sutcliffe efficiency(NSE)를 통해 평가하였다. 최종 선택된 방법론을 통하여 한반도 전역을 그리드 기반의 강수 및 최저온도/최고온도의 일별자료로 생성하였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.10a
/
pp.150-152
/
2022
In this work, we propose a model that considers the behavior and synaptic plasticity of sensory neurons based on Liquid Time-constant Network (LTC). The neuron connection structure was experimented with four types: the increasing number of neurons, the decreasing number, the decreasing number, and the decreasing number. In this study, we experimented using a time series prediction dataset to see if the performance of the changed model improved compared to LTC. Experimental results show that the application of modeling of sensory neurons does not always bring about performance improvements, but improves performance through proper selection of learning rules depending on the type of dataset. In addition, the connective structure of neurons showed improved performance when it was less than four layers.
In this paper, broadband underwater propagation channel modeling based on eigenray analysis is discussed. Underwater channels are often formulated in frequency domain time-harmonic signals, which are impractical for simulating broadband signals in time domain. In this regard, time domain modeling of the underwater propagation channel is required for the simulation of broadband signals, for which the eigenray analysis based on ray tracing, resulting in multipath propagation delays in time-domain, is used in this paper. For discrete time system application, the phase, frequency-dependent loss and non-integer sample delays for each eigenray, are approximated by the finite impulse response of the broadband propagation channel.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.6
/
pp.809-817
/
2020
In the design and development process of Small-Sat power distribution and transmission module, the stability of dynamic resources was evaluated by a deep learning algorithm. The requirements for the stability evaluation consisted of the power distribution function of the power distribution module and demand module to the SAR radar in Small-Sat. To verify the performance of the switching power components constituting the power module PDM, the reliability was verified using a dynamic neural network. The adoption material of deep learning for reliability verification is the power distribution function of the payload to the power supplied from the small satellite main body. Modeling targets for verifying the performance of this function are output voltage (slew rate control), voltage error, and load power characteristics. First, to this end, the Coefficient Structure area was defined by modeling, and PCB modules were fabricated to compare stability and reliability. Second, Levenberg-Marquare based Two-Way NARX neural network Sigmoid Transfer was used as a deep learning algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.