Proceedings of the Korea Water Resources Association Conference
/
2006.05a
/
pp.1546-1550
/
2006
한강 하구부의 3개 지점에서 수중 계류방식으로 약 5개월에 걸쳐 탁도를 관측하였다. 이 과정에서 관측기기의 한계로 인해 탁도 자료의 결측치가 발생하였고, 이를 효율적으로 보완하기 위해 새로운 결측치 보완기법을 개발하였다. 개발된 기법, 일명 면적비법은 시계열 자료가 단일주기와 상이한 진폭을 갖는다는 가정하에, 각 사이클의 면적비율을 통해 결측치를 보완하는 방법이다. 면적비법과 기존의 최소제곱법을 검증하기 위해 결측치가 없는 정상적인 자료에 적용해 보면, 두 방법 모두 첨두치를 약간 과소 산정하는 경향이 있었다. 하지만 면적비법의 경우, 원자료의 총 면적과 보완자료의 총 면적간의 차이가 거의 없었다. 이 방법들을 한강 하구부에서 관측된 탁도자료에 적용해 본 결과, 면적비법은 합리적으로 결측치를 보완하는 반면, 최소제곱법은 보완자료의 총면적이 원자료에 비해 작아지는 오류가 발생하였다. 따라서 최소제곱법에 비해 면적비법이 결측치 보완에 더 우수한 결과를 제공함을 알 수 있었다. 본 연구에서 개발한 면적비법은 주기성이 뚜렷한 시계열자료의 결측치 보완에 유용하게 쓰일 수 있으리라 기대된다.
Proceedings of the Korea Information Processing Society Conference
/
2017.11a
/
pp.768-769
/
2017
본 연구에서는 시계열예측 신경망기법에서 특징 선별기법을 적용하여 학습의 효율을 높이고 성능을 개선하는 방법론을 고찰한다. 순환구조 신경망을 사용하여 시계열 예측기를 구현하였으며, 효과적인 특징을 선별하기 위하여 FMM 신경망을 사용하여 특징의 연관도 요소를 산출하는 방법을 제시하였다. 모바일 결제시스템에서 실제 측정된 데이터를 사용하여 사용빈도 예측실험을 수행하였으며 그 결과를 통하여 제안된 기법의 유용성을 고찰하였다.
Annual Conference on Human and Language Technology
/
1995.10a
/
pp.152-163
/
1995
본 논문에서는 은닉 마르코프 모형(HMM)을 이용하여 사람이 쓴 필기의 통계적 특징을 갖는 글씨를 생성하는 방법에 대해서 기술코자 한다. 온라인 필기처럼 같이 필기 궤적을 시계열 신호로 표현하고, 그 특징을 통계적 모형의 하나인 HMM으로 표현한다. HMM은 시계열 신호에 대응하는 모형 내부 경로와 심볼열의 확률 분포를 표현하는 함수이다. 따라서 최적 경로에서 볼 수 있는 최적 출력 심볼열은 훈련 필기 데이타의 평균적 필기 특징에 해당한다. HMM이 주어졌을 때 HMM에서 최적의 패턴을 해석적으로 구하는 방법은 알려져 있지 않다. 본 논문에서는 동적 프로그래밍 기법을 적용하여 HMM이나 HMM 네트워크 모형에서 필기를 생성하는 방법을 제시하고, 아울러 HMM의 문제점을 지적한다.
Proceedings of the Korea Institute of Fire Science and Engineering Conference
/
2013.11a
/
pp.219-220
/
2013
본 연구에서는 최근 5년간 서울 지역에서 발생한 월별 화재 건수와 동일한 지역에서 같은 기간 동안 가정용으로 사용된 전기량 사이에 존재하는 연관성을 파악하기 위하여, 이 두 변수에 대하여 시계열분석을 수행하였다. 본 연구에서는 통계전용 인터프리터 언어 R이 사용되었으며, 특히 칼만 필터를 이용한 데이터 처리를 위해 R에서 제공되는 KFAS(Kalman Filtering And Smoothing) 패키지가 사용되었다. 우선 시계열분석을 통해 월별 화재발생 건수는 1년을 주기로 하는 사인파 곡선의 형태로 변화하지만, 가정용 전기사용량은 1년에 두 번씩, 즉 여름철과 겨울철에 크게 증가한다는 사실을 확인할 수 있었다. 더 나아가 KFAS의 파라미터를 적절히 조절함으로써, 가정용 전기사용량과 월별 화재발생 건수 사이의 연관성을 가시적으로 보여줄 수 있었다.
Proceedings of the Korea Information Processing Society Conference
/
2009.04a
/
pp.523-526
/
2009
시계열 데이터에서 패턴을 분석하는 기법은 많은 발전이 이루어져 오고 있으나 주식시장의 경우 패턴 분석 및 예측에 관련되어 많은 연구가 이루어져 있지 않고 있다. 이는 주가의 등락 자체가 본질적으로 무작위하다고 생각되어지고 있기 때문이다. 본 연구에서는 주가의 등락이 보여주는 무작위성의 정도를 Kolmogorov Complexity로 측정, 그 무작위성의 정도와 본 논문에서 제시한 반전역정렬로 예측하는 주가의 예측 간의 상관관계를 보인다. 이를 위하여 KOSPI 주식 데이터 28년 690개의 데이터를 수집하여 이들 주식 데이터의 등락을 양자화된 문자열로 변환하여 본 논문에서 제시한 방법의 의미를 평가하였다. 그 결과 Kolmogorov Complexity가 높은 경우에는 주가 변동 예측이 어려우며, Kolmogorov Complexity가 낮은 경우에는 주식 변동 예측은 가능하나 등락 예측 율은 단기 예측은 12%이상의 예측율을 보일 수 없으며, 장기 예측의 경우 54%의 예측율로 수렴함을 확인하였다.
Journal of the Korea Society of Computer and Information
/
v.25
no.2
/
pp.31-39
/
2020
In this paper, we introduce a technique for generating synthetic benchmarks based on time series data. Many of the data measured on IoT devices have a time series characteristic that measures numerical changes over time. However, there is a problem that it is difficult to model the data measured over a long period as generalized time series data. To solve this problem, this paper introduces the BST-IGT model. The BST-IGT model separates the entire data into sections that can be easily time-series modeled, collects the generated data into templates, and produces new synthetic benchmarks that share or modify characteristics based on them. As a result of making a new benchmark using the proposed modeling method, we could create a benchmark with multiple aspects by mixing the composite benchmark with the statistical features of the existing data and other benchmarks.
Proceedings of the Korean Statistical Society Conference
/
2002.05a
/
pp.153-158
/
2002
시계열 자료의 분석에서 분산이 일정하지 않을 경우 이에 대한 해결방법으로 변환이 사용된다. 그러나 이러한 변환은 분산을 안정화시킴으로서 추정 및 검정에 타당성을 주는 반면 새로운 편의를 생성하거나(Granger & Newbold,1976) 모형을 복잡하게 만듦으로써 해석의 어려움도 수반한다. 신과 강(2001)은 평균이 크고 그에 비해 분산이 작을 경우 Box-Cox 멱 변환이 시계열 자료에 대하여 별 영향을 미치지 않음을 연구하였다. 본 논문은 이에 대한 확장으로 공간자료에서도 이 이론이 성립함을 밝혔다.
Proceedings of the Korean Information Science Society Conference
/
2004.10b
/
pp.85-87
/
2004
유클리드 거리에 기반하여 유사한 시퀀스 검색을 하는 기법들은 각 시퀀스에서 특징을 추출하여 차원을 감소시킨 후, R-tree 같은 다차원 인덱싱 기법을 사용하여 검색을 수행한다. 본 논문에서는 시계열 데이터 베이스에서의 유사 검색 성능 향상을 위한 새로운 특징 추출 기법인 Polar Wavelet 기법을 제안한다. 이 기법은 유사 검색 시 후보 시퀀스의 개수를 줄임으로써 검색 성능을 향상시킬 수 있고, 특징 추출을 위해 시퀀스의 길이를 2$^n$으로 만들 필요가 없는 장점을 갖고 있다.
본 연구에서는 효율적 시장가설을 검증할 때 일반적으로 이용하는 주가의 로그변환방법은 마팅게일과 서브마팅게일을 구분할 수 없다는 것을 이론적으로 보여주고, 이러한 문제를 해결하기 위해서는 로그변환없이 일차 차분을 한 시계열 데이타를 이용하는 것이 바람직하다는 것을 제시한다. 또한 마팅게일과 서브마팅게일의 구분하기 위해서는 주가 차분 시계열 데이타의 공분산이라는 검정통계량을 이용하는데, 이 공분산이라는 검정통계량을 이용하여 실증적으로 검증을 하기 위해서는 이 통계량의 분포를 알아야 한다. 본 연구에서는 bootstrap방법론을 이용하여 이 공분산의 분포를 구하는 방법론을 제시한다.
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.395-397
/
2003
온라인 필기 인식기의 필기 모델을 응용하여 오프라인 한글 필기의 필기 궤적을 추적하고 인식하는 방법을 제안한다. 사용한 온라인 모델은 HMM의 망으로 구성한 조합형 한글 필기 모델 BongNet이다. 그리고 시계열 신호의 길이에 대한 모델이 전혀 없는 표준 HMM 대신 동적인 연속 출력 nonstationary HMM 을 이용한 방법을 기술하였다. 획 추적 계산 과정에는 프레임 동기 알고리즘을 적용한다 HMM의 각 상태는 가능한 필기 궤적상의 위치에 대한 정보를 기록한다. 매 시각마다 최종 상태의 후보 중에서 모든 획을 완전히 지나는 경로가 있는지를 조사한다. 본 방법은 문자영상에서 온라인 시계열 코드를 만들어 가는 과정이며 코드와 동시에 인식결과를 출력한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.