• Title/Summary/Keyword: 시계열

Search Result 3,296, Processing Time 0.038 seconds

Filling Method for Missing Turbidity Data having Periodicity (주기성을 갖는 탁도자료의 결측치 보완 기법)

  • Baek, Kyong-Oh;Cho, Hong-Yeon;Lee, Sam-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1546-1550
    • /
    • 2006
  • 한강 하구부의 3개 지점에서 수중 계류방식으로 약 5개월에 걸쳐 탁도를 관측하였다. 이 과정에서 관측기기의 한계로 인해 탁도 자료의 결측치가 발생하였고, 이를 효율적으로 보완하기 위해 새로운 결측치 보완기법을 개발하였다. 개발된 기법, 일명 면적비법은 시계열 자료가 단일주기와 상이한 진폭을 갖는다는 가정하에, 각 사이클의 면적비율을 통해 결측치를 보완하는 방법이다. 면적비법과 기존의 최소제곱법을 검증하기 위해 결측치가 없는 정상적인 자료에 적용해 보면, 두 방법 모두 첨두치를 약간 과소 산정하는 경향이 있었다. 하지만 면적비법의 경우, 원자료의 총 면적과 보완자료의 총 면적간의 차이가 거의 없었다. 이 방법들을 한강 하구부에서 관측된 탁도자료에 적용해 본 결과, 면적비법은 합리적으로 결측치를 보완하는 반면, 최소제곱법은 보완자료의 총면적이 원자료에 비해 작아지는 오류가 발생하였다. 따라서 최소제곱법에 비해 면적비법이 결측치 보완에 더 우수한 결과를 제공함을 알 수 있었다. 본 연구에서 개발한 면적비법은 주기성이 뚜렷한 시계열자료의 결측치 보완에 유용하게 쓰일 수 있으리라 기대된다.

  • PDF

A Time Series Prediction Technique using Hybrid Neural Networks (복합형 신경망을 이용한 시계열 예측 기법)

  • Han, Bokyoung;Yang, Hongmin;Park, Sojeong;Kim, Hojoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.768-769
    • /
    • 2017
  • 본 연구에서는 시계열예측 신경망기법에서 특징 선별기법을 적용하여 학습의 효율을 높이고 성능을 개선하는 방법론을 고찰한다. 순환구조 신경망을 사용하여 시계열 예측기를 구현하였으며, 효과적인 특징을 선별하기 위하여 FMM 신경망을 사용하여 특징의 연관도 요소를 산출하는 방법을 제시하였다. 모바일 결제시스템에서 실제 측정된 데이터를 사용하여 사용빈도 예측실험을 수행하였으며 그 결과를 통하여 제안된 기법의 유용성을 고찰하였다.

Hangel Handwriting generation using HMMs (HMM을 이용한 한글 필기 생성)

  • Sin, Bong-Kee;Kim, Jin-Hyung
    • Annual Conference on Human and Language Technology
    • /
    • 1995.10a
    • /
    • pp.152-163
    • /
    • 1995
  • 본 논문에서는 은닉 마르코프 모형(HMM)을 이용하여 사람이 쓴 필기의 통계적 특징을 갖는 글씨를 생성하는 방법에 대해서 기술코자 한다. 온라인 필기처럼 같이 필기 궤적을 시계열 신호로 표현하고, 그 특징을 통계적 모형의 하나인 HMM으로 표현한다. HMM은 시계열 신호에 대응하는 모형 내부 경로와 심볼열의 확률 분포를 표현하는 함수이다. 따라서 최적 경로에서 볼 수 있는 최적 출력 심볼열은 훈련 필기 데이타의 평균적 필기 특징에 해당한다. HMM이 주어졌을 때 HMM에서 최적의 패턴을 해석적으로 구하는 방법은 알려져 있지 않다. 본 논문에서는 동적 프로그래밍 기법을 적용하여 HMM이나 HMM 네트워크 모형에서 필기를 생성하는 방법을 제시하고, 아울러 HMM의 문제점을 지적한다.

  • PDF

시계열분석을 통한 화재발생과 전기사용량 간의 연관성에 관한 연구

  • Gwon, Seong-Pil;Song, Dong-U
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2013.11a
    • /
    • pp.219-220
    • /
    • 2013
  • 본 연구에서는 최근 5년간 서울 지역에서 발생한 월별 화재 건수와 동일한 지역에서 같은 기간 동안 가정용으로 사용된 전기량 사이에 존재하는 연관성을 파악하기 위하여, 이 두 변수에 대하여 시계열분석을 수행하였다. 본 연구에서는 통계전용 인터프리터 언어 R이 사용되었으며, 특히 칼만 필터를 이용한 데이터 처리를 위해 R에서 제공되는 KFAS(Kalman Filtering And Smoothing) 패키지가 사용되었다. 우선 시계열분석을 통해 월별 화재발생 건수는 1년을 주기로 하는 사인파 곡선의 형태로 변화하지만, 가정용 전기사용량은 1년에 두 번씩, 즉 여름철과 겨울철에 크게 증가한다는 사실을 확인할 수 있었다. 더 나아가 KFAS의 파라미터를 적절히 조절함으로써, 가정용 전기사용량과 월별 화재발생 건수 사이의 연관성을 가시적으로 보여줄 수 있었다.

  • PDF

A New Pattern Analysis Methodology for Time-Series Data using Symbol String Quantization (시계열 데이터의 양자화된 문자열 변환을 통한 새로운 패턴 분석 기법)

  • Kim, Hyong-Jun;Yoon, Taijin;Cho, Hwan-Gue
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.523-526
    • /
    • 2009
  • 시계열 데이터에서 패턴을 분석하는 기법은 많은 발전이 이루어져 오고 있으나 주식시장의 경우 패턴 분석 및 예측에 관련되어 많은 연구가 이루어져 있지 않고 있다. 이는 주가의 등락 자체가 본질적으로 무작위하다고 생각되어지고 있기 때문이다. 본 연구에서는 주가의 등락이 보여주는 무작위성의 정도를 Kolmogorov Complexity로 측정, 그 무작위성의 정도와 본 논문에서 제시한 반전역정렬로 예측하는 주가의 예측 간의 상관관계를 보인다. 이를 위하여 KOSPI 주식 데이터 28년 690개의 데이터를 수집하여 이들 주식 데이터의 등락을 양자화된 문자열로 변환하여 본 논문에서 제시한 방법의 의미를 평가하였다. 그 결과 Kolmogorov Complexity가 높은 경우에는 주가 변동 예측이 어려우며, Kolmogorov Complexity가 낮은 경우에는 주식 변동 예측은 가능하나 등락 예측 율은 단기 예측은 12%이상의 예측율을 보일 수 없으며, 장기 예측의 경우 54%의 예측율로 수렴함을 확인하였다.

BST-IGT Model: Synthetic Benchmark Generation Technique Maintaining Trend of Time Series Data

  • Kim, Kyung Min;Kwak, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.31-39
    • /
    • 2020
  • In this paper, we introduce a technique for generating synthetic benchmarks based on time series data. Many of the data measured on IoT devices have a time series characteristic that measures numerical changes over time. However, there is a problem that it is difficult to model the data measured over a long period as generalized time series data. To solve this problem, this paper introduces the BST-IGT model. The BST-IGT model separates the entire data into sections that can be easily time-series modeled, collects the generated data into templates, and produces new synthetic benchmarks that share or modify characteristics based on them. As a result of making a new benchmark using the proposed modeling method, we could create a benchmark with multiple aspects by mixing the composite benchmark with the statistical features of the existing data and other benchmarks.

공간통계모형에서 Box-Cox 변환에 대한 영향력 분석연구

  • Lee, Jin-Hui;Sin, Gi-Il
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.05a
    • /
    • pp.153-158
    • /
    • 2002
  • 시계열 자료의 분석에서 분산이 일정하지 않을 경우 이에 대한 해결방법으로 변환이 사용된다. 그러나 이러한 변환은 분산을 안정화시킴으로서 추정 및 검정에 타당성을 주는 반면 새로운 편의를 생성하거나(Granger & Newbold,1976) 모형을 복잡하게 만듦으로써 해석의 어려움도 수반한다. 신과 강(2001)은 평균이 크고 그에 비해 분산이 작을 경우 Box-Cox 멱 변환이 시계열 자료에 대하여 별 영향을 미치지 않음을 연구하였다. 본 논문은 이에 대한 확장으로 공간자료에서도 이 이론이 성립함을 밝혔다.

  • PDF

Polar Wavelet Method for Efficient Similarity Search in Time Series Databases (시계열 데이터 베이스에서의 효율적인 유사 검색을 위한 Polar Wavelet 기법)

  • 이범기;강성구;이상준;이석호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.85-87
    • /
    • 2004
  • 유클리드 거리에 기반하여 유사한 시퀀스 검색을 하는 기법들은 각 시퀀스에서 특징을 추출하여 차원을 감소시킨 후, R-tree 같은 다차원 인덱싱 기법을 사용하여 검색을 수행한다. 본 논문에서는 시계열 데이터 베이스에서의 유사 검색 성능 향상을 위한 새로운 특징 추출 기법인 Polar Wavelet 기법을 제안한다. 이 기법은 유사 검색 시 후보 시퀀스의 개수를 줄임으로써 검색 성능을 향상시킬 수 있고, 특징 추출을 위해 시퀀스의 길이를 2$^n$으로 만들 필요가 없는 장점을 갖고 있다.

  • PDF

효율적 시장가설과 서브마팅게일의 검증

  • Ok, Gi-Yul;Song, Yeong-Hyo
    • The Korean Journal of Financial Management
    • /
    • v.14 no.1
    • /
    • pp.207-217
    • /
    • 1997
  • 본 연구에서는 효율적 시장가설을 검증할 때 일반적으로 이용하는 주가의 로그변환방법은 마팅게일과 서브마팅게일을 구분할 수 없다는 것을 이론적으로 보여주고, 이러한 문제를 해결하기 위해서는 로그변환없이 일차 차분을 한 시계열 데이타를 이용하는 것이 바람직하다는 것을 제시한다. 또한 마팅게일과 서브마팅게일의 구분하기 위해서는 주가 차분 시계열 데이타의 공분산이라는 검정통계량을 이용하는데, 이 공분산이라는 검정통계량을 이용하여 실증적으로 검증을 하기 위해서는 이 통계량의 분포를 알아야 한다. 본 연구에서는 bootstrap방법론을 이용하여 이 공분산의 분포를 구하는 방법론을 제시한다.

  • PDF

An Accurate Stochastic Model for the Pen Trajectory-Based OCR (필기영상의 동적 정보 추출 및 인식을 위한 통계적 모형)

  • 신봉기
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.395-397
    • /
    • 2003
  • 온라인 필기 인식기의 필기 모델을 응용하여 오프라인 한글 필기의 필기 궤적을 추적하고 인식하는 방법을 제안한다. 사용한 온라인 모델은 HMM의 망으로 구성한 조합형 한글 필기 모델 BongNet이다. 그리고 시계열 신호의 길이에 대한 모델이 전혀 없는 표준 HMM 대신 동적인 연속 출력 nonstationary HMM 을 이용한 방법을 기술하였다. 획 추적 계산 과정에는 프레임 동기 알고리즘을 적용한다 HMM의 각 상태는 가능한 필기 궤적상의 위치에 대한 정보를 기록한다. 매 시각마다 최종 상태의 후보 중에서 모든 획을 완전히 지나는 경로가 있는지를 조사한다. 본 방법은 문자영상에서 온라인 시계열 코드를 만들어 가는 과정이며 코드와 동시에 인식결과를 출력한다.

  • PDF