• Title/Summary/Keyword: 시계열회귀분석

Search Result 319, Processing Time 0.022 seconds

Time series regression model for forecasting the number of elementary school teachers (초등학교 교원 수 예측을 위한 시계열 회귀모형)

  • Ryu, Soo Rack;Kim, Jong Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.2
    • /
    • pp.321-332
    • /
    • 2013
  • Because of the continuous low birthrates, the number of the elementary students will decrease by 17% in 2020 compared to 2011. The purpose of this study is to forecast the number of elementary school teachers until 2020. We used the data in education statistical year books from 1970 to 2010. We used the time-series regression model, time series grouped regression model and exponential smoothing model to predict the number of teachers for the next ten years. Consequently time-series grouped regression model is a better model for forecasting the number of elementary school teachers than other models.

시간의 흐름에 따른 무조건부 주가분산과 주가형성

  • Lee, Il-Gyun
    • The Korean Journal of Financial Studies
    • /
    • v.14 no.1
    • /
    • pp.41-56
    • /
    • 2008
  • 주식 수익률이 정상적 과정이 아니라 비정상적 과정에 의해서 생성되고 있다는 사실이 여러 실증 분석에서 제시되고 있다. 시계열의 평균이 시간의 흐름에 따라 변하면 이 시계열은 비정상적 과정에 의하여 생성된다. 시간의 흐름에 따라 평균이 변하는 비정상 시계열은 단위근과 공적분에 의하여 시계열의 운동을 모형화하고 있다. 한편 시계열의 비정상성은 분산이 시간의 흐름에 따라 변할 때에도 발생한다. 시간의 흐름에 따라 무조건부 분산은 변하지 않고 있지만 이용 가능한 정보 집합을 조건으로 하는 조건부 분산이 변하는 경우도 있다. 이 같은 성질을 가진 주가 시계열은 자기회귀 조건부 이분산(ARCH) 계통의 과정으로 모형화하고 있다. 그러나 무조건부 분산이 시간의 흐름에 따라 변하면 ARCH 계통은 중대한 모형정립과오(misspecification)에 직면하게 된다. 따라서 본 논문은 무조건부 분산이 시간의 흐름에 따라 변할 때 자기 회귀 과정의 모수를 추정하는 방법을 검토하고, 이 방법을 한국 종합주가 지수에 적용하여 자기회귀 과정의 모수를 추정하였다. 이 방법에 의하여 추정된 2계 자기회귀 과정의 모수값 중 상수항과 제1계 항의 계수는 통상 최소자승법에 의한 값과 유사하다. 그러나 제2계 항 모수의 값은 양자가 상당히 다르다. 최소자승에 의한 제2계 값이 과대 추정되고 있다.

  • PDF

A Comparison of Autoregressive Integrated Moving Average and Artificial Neural Network for Time Series Prediction (자기회귀누적이동평균모형과 신경망모형을 이용한 시계열예측의 비교)

  • Yoon, YeoChang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.1516-1519
    • /
    • 2011
  • 예측에 필요한 중요한 자료에는 비선형 자료와 시계열과 같은 선형 자료 등이 있다. 이들 자료는 그 함축적인 관계가 매우 복잡하여 전통적인 통계분석 도구로 식별하는데 어려움이 많다. 신경망 분석은 비모수적 문제나 비선형 곡선 적합능력의 우수성 때문에 현실세계에서의 고유한 복잡성을 다루는 많은 경제 응용 분야에서 널리 이용되고 있다. 신경망은 또한 경제 시계열자료의 예측분야에서도 여러 연구에서 훌륭한 도구로서 적용되고 있다. 전통적으로 우리나라에서 시계열자료의 예측은 선형 자료적 분석을 중심으로 하는 분석도구인 자기회귀누적이동평균(ARIMA)모형을 이용한 시계열분석이 일반적이다. 이 연구에서는 신경망과 ARIMA 모형을 이용하여 한국의 주가변동 자료 및 자동차등록 현황 자료등과 같은 시계열자료를 이용한 예측결과를 비교한다. 연구의 결과는 신경망을 이용한 예측 방법들이 ARIMA 예측 결과보다 통계적으로 작은 오차를 주는 보다 효율적인 방법임을 보여주고 있다.

Quo Vadis?

  • Lee, Il-Gyun
    • The Korean Journal of Financial Studies
    • /
    • v.2 no.2
    • /
    • pp.1-64
    • /
    • 1995
  • 이 논문은 자본시장이 무작위 행보를 운동법칙으로 삼고 있는가, 아니면 정상성의 시계열에 의하여 움직이고 있는가를 심도있게 분석한다. 주가가 무작위 행보를 따른다는 가설을 긍정적 입장에서, 부정적 측면에서, 그리고 이 양자가 공존하고 있다는 관점에서 각 측면에 합당한 방법론을 통한 실증적 분석에 의하여 검정한다. 여러 검증방법을 사용하여 종합주가지수 수익률을 분석하였는 바, 주가 시계열은 무작위 행보가 아니라 정상성의 확률과정(stationary precess) 임이 밝혀졌다. 이와 같은 결과는 우리나라의 증권시장의 성질 중의 하나가 평균회귀라는 것을 입증하는 증거이다. 그리고 평균회귀가 단기적으로 발생하여 그 속도가 매우 빠르다. 주가 시계열에 충격이 가해져 영향을 받을 때 3일 정도가 경과하면 그 충격이 거의 모두 소멸하고 있다. 우리나라 증권시장은 volatility가 높다. 주가는 상당히 높은 자기상관 관계를 갖고 있으며, 이 상관계수가 음수로서 약 -0.50이다. 무척 빠른 속도의 평균회귀와 높은 시계열 상관에 비추어 볼 때 우리나라의 자본시장이 효율적 시장이라는 가설에는 큰 의심이 든다. 뿐만 아니라 이 실증적 결과는 단기적 예측 가능성이 존재할 수 있음을 시사하고 있다. 주가 시계열은 이분산성(異分散性)이 꽤 높다.

  • PDF

A Study of Traffic Prediction Method Based on Hidden Markov Model (은닉 마르코프 모델 기반의 교통량 예측 기법 연구)

  • Kim, Min-Jae;You, Hee-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.01a
    • /
    • pp.347-348
    • /
    • 2014
  • 최근 급증하는 교통 혼잡으로 인해 시간적/물질적 손실이 크게 발생하고 있다. 이러한 교통난 해소는 시설투자만으로는 근본적인 해결책이 될 수 없다는 판단 하에 지난 수년간 보다 정확한 교통량을 예측하기 위해 시계열 기반의 다양한 교통량 예측 모델들이 개발 되어 왔다. 그러나 시계열 기반의 모델들은 회귀분석을 통해 과거 교통량을 분석하고 과거의 교통패턴이 미래에도 지속적으로 연장된다는 가정 하에 연구되었기 때문에 실시간으로 급변하는 불규칙한 교통 패턴에 대한 예측의 신뢰성을 떨어트린다. 또한 시계열 기반의 예측 기법은 어떠한 회귀분석 모델을 사용하는지에 따라 성능의 차이가 많이 나타나기 때문에 회귀분석 모델 선택이 중요하다. 이러한 제약을 극복하기 위해 본 논문에서는 은닉 마르코프 모델(Hidden Markov model)을 이용해 동적인 교통 패턴에 따라 현재 상황에 맞는 회귀분석 모델을 선택하는 신뢰도 높은 교통량 예측 시스템을 제안한다.

  • PDF

Similarity Search in Time-Series Databases Using Decomposition Method (시계열 데이터베이스에서의 분해법을 이용한 유사 검색 기법)

  • 박신유;문봉희
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.110-112
    • /
    • 2000
  • 최근 몇 년간 시계열 데이터의 저장 및 분석에 대한 연구가 활발히 진행되고 있으며, 시계열 데이터베이스에서 유사패턴(similarity pattern)을 탐색하는 기법이 광범위한 응용분야에서 중요한 연구주제로 자리잡고 있다. 본 논문에서는 회귀분석방법을 바탕으로 한 분해 시계열 방법을 이용함으로써 기존의 유사성의 개념을 확장시켰다. 즉, 시계열 데이터가 가지고 있는 패턴을 여러 성분으로 분해하여 각기 다른 저장 공간에 저장하고, 이를 이용하여 유사성을 탐색할 때에도 분리된 각 성분 중 특정 변동특성이 유사한 데이터를 추가적으로 요구되는 시간없이 검색할 수 있다. 이는 전체 시계열 데이터를 이해하는데 뿐만 아니라 데이터를 예측하는 방법에도 유용하게 사용될 수 있다.

  • PDF

Time series analysis for the amount of medicine from the Korea Consumer Agency (한국 소비자원 의료분야 처리금액에 대한 시계열 분석)

  • Hee Song Kang;Sukhui Kwon;SungDuck Lee
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.1
    • /
    • pp.21-32
    • /
    • 2023
  • The amount of money processed in medicine from the Korea Consumer Agency was studied by the various time series models. The medical data set from the Korea Consumer Agency were consisted of counseling, damage relief and conciliation. For the analysis of time series, autoregressive moving average model, vector autoregressive model and the transfer function model were used. We considered the stationarity and cross correlation function for the identification and fitting. As a result, the transfer function model showed a better prediction. Whereas, the vector autoregressive model also provided good information for the degree and duration of the influence of variables.

주가시계열에 대한 확률미분방정식(確率微分方程式)의 모수(母數) 추정(推定)과 자본시장의 운동법칙(運動法則)

  • Lee, Il-Gyun
    • The Korean Journal of Financial Management
    • /
    • v.15 no.2
    • /
    • pp.279-337
    • /
    • 1998
  • 이 논문에서는 주가가 확률과정, 즉 확률미분방정식에 의하여 생성되는가를 검정하고 주가의 운동법칙을 규명한다. 일별종합주가지수가 양수의 완전시계열상관을 갖고 있으며, 더욱이 3년 정도의 시차까지 의미있는 시계열상관을 갖고 있음이 발견되었다. 수익률과 가격변화의 시계열상관도 존재하고 시계열은 정상성(定常性)을 갖고 있다. 마팅게일에 의하여 주가가 생성되고있지 않음이 밝혀졌다. 한국증권거래소에서 계산하고 있는 일별 종합주가지수를 포함한 41개 산업별 지수를 사용하여 자본시장의 운동법칙을 규명하기 위하여 가장 많이 이용하고 있는 세개의 확률미분방정식을 검정하였다. 각 주가지수들이 온스타인 울렌벡 브라운 운동과정과 평균회귀과정을 따르지 않고 있다는 것이 발견되었다. 그러나 주가가 편류를 갖는 일반 기하 브라운 운동과정에 의하여 생성되고 있음이 검정을 통하여 확인되었다. 평균회귀과정에 의하여 주가가 생성되지 않는다는 발견은 의외라 할 수 있다. 주가가 온스타인 울렌벡 과정을 따르지 않는다는 것은 주가가 제 1계 정상적 자기회귀과정이 아니라는 것을 의미한다. 일별종합주가지수는 제 4계 자기회귀과정에 의하여 생성된다. 가격변화와 수익률의 생성함수는 제 4계 자기회귀과정이다. 종합주가지수의 제 1계 시계열상관계수는 1이다. 상당히 큰 시차를 갖을 때까지 시계열상관이 대략적으로 1을 유지하고 있다. 따라서 지수가 마팅게일을 따르고 있지 않다. 이 점은 가격변화와 수익률에 있어서도 유사하다. 가격변화, 수익률, 대수수익률의 제 1계 시계열상관이 0.1로 유의적이다. 따라서 수익도 마팅게일 과정을 따르고 있지 않다. 증권가격은 세 번에 걸쳐 구조의 번화가 발생하였다. 구조의 변화가 발생할 때마다 평균가격이 상승하였다. 이와 같은 현상은 장기적 기대가격이 미지일 가능성이 배제되지 않는다. 단기적 기대 주가가 알려진 반면 장기적 기대 주가가 미지라면 평균회귀과정은 장기적 기대주가로 회귀하고 있는 과정이므로 장기기대 주가의 미지성이 평균회귀 과정의 기각을 유도하게 된다. 우리나라의 투자자들은 무위험자산과 위험을 동시에 고려하여 투자활동을 전개하고 있음이 발견되었다. 선형의 효용함수를 갖는 위험중립적 태도의 투자자가 아니다. 위험기피형 효용함수 아래에서 투자활동을 수행하고 있는 합리적 투자자들이라 할 수 있다. 뿐 만 아니라 자신의 평생에 걸친 소비를 소비가 이루어지는 각 기마다 가급적 일정하게 하는 소비행동을 목표로 삼고 소비와 투자에 대한 의사결정을 내리고 있음이 실증분석을 통하여 밝혀졌다. 투자자들은 무위험 자산과 위험성 자산을 동시에 고려하여 포트폴리오를 구성하는 투자활동을 행동에 옮기고 있다.

  • PDF

Estimation of Layered Periodic Autoregressive Moving Average Models (계층형 주기적 자기회귀 이동평균 모형의 추정)

  • Lee, Sung-Duck;Kim, Jung-Gun;Kim, Sun-Woo
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.507-516
    • /
    • 2012
  • We study time series models for seasonal time series data with a covariance structure that depends on time and the periodic autocorrelation at various lags $k$. In this paper, we introduce an ARMA model with periodically varying coefficients(PARMA) and analyze Arosa ozone data with a periodic correlation in the practical case study. Finally, we use a PARMA model and a seasonal ARIMA model for data analysis and show the performance of a PARMA model with a comparison to the SARIMA model.

Investigation of Research Trends in Information Systems Domain Using Topic Modeling and Time Series Regression Analysis (토픽모델링과 시계열회귀분석을 활용한 정보시스템분야 연구동향 분석)

  • Kim, Chang-Sik;Choi, Su-Jung;Kwahk, Kee-Young
    • Journal of Digital Contents Society
    • /
    • v.18 no.6
    • /
    • pp.1143-1150
    • /
    • 2017
  • The objective of this study is to examine the trends in information systems research. The abstracts of 1,245 articles were extracted from three leading Korean journals published between 2002 and 2016: Asia Pacific Journal of Information Systems, Information Systems Review, and The Journal of Information Systems. Time series analysis and topic modeling methods were implemented. The topic modeling results showed that the research topics were mainly "systems implementation", "communication innovation", and "customer loyalty". The time series regression results indicated that "customer satisfaction", "communication innovation", "information security", and "personal privacy" were hot topics, and on the other hand, "system implementation" and "web site" were the least popular. This study also provided suggestions for future research.