• Title/Summary/Keyword: 시계열의 비선형성

Search Result 123, Processing Time 0.038 seconds

Technology 수렴가능성에 대한 실증적 고찰

  • 조상섭;이장우
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2003.05a
    • /
    • pp.19-29
    • /
    • 2003
  • 본 연구는 우리나라 산업간에 Technology 수렴가능성에 대한 기존 선형(Linearity) 설정 관계식보다 비선형(Nonlinearity) 설정관계식에서 실증분석하는 데 연구목적이 있다. 본 연구목적을 위하여 장기적 시계열자료를 이용하여(1970∼2000), 우리나라 제조업과 총 산업(Grand Total)간에 Technology Gap에 대한 정상성(Stationarity)을 검증함으로써, Technology수렴 가능성을 검토하였다. 본 연구결과는 Technology수렴가설에 대한 두 가지 중요한 실증분석방향을 제공하고 있다. 첫째, 우리나라 산업간에 Technology 수렴가능성은 비선형관계에서 분석해야 한다는 결론을 얻었다. 따라서 우리나라 산업간에 Technology 수렴가능성은 단순 선형관계를 기반으로 할 경우, 설정오류에 따른 Technology 수렴가능성이 성립하지 않을 가능성이 높게 나타날 수 있었다. 둘째, 우리나라 경제의 경우, Technology 수렴가능성에 대한 분석결과는 비선형관계에서 Technology Regime별로 Technology 수렴가능성이 다르게 나타나고 있음으로 실증분석방법론 및 그 결과에 대한 시사점도출에 유의해야 한다.

  • PDF

Design of Fuzzy System with Hierarchical Classifying Structures and its Application to Time Series Prediction (계층적 분류구조의 퍼지시스템 설계 및 시계열 예측 응용)

  • Bang, Young-Keun;Lee, Chul-Heui
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.595-602
    • /
    • 2009
  • Fuzzy rules, which represent the behavior of their system, are sensitive to fuzzy clustering techniques. If the classification abilities of such clustering techniques are improved, their systems can work for the purpose more accurately because the capabilities of the fuzzy rules and parameters are enhanced by the clustering techniques. Thus, this paper proposes a new hierarchically structured clustering algorithm that can enhance the classification abilities. The proposed clustering technique consists of two clusters based on correlationship and statistical characteristics between data, which can perform classification more accurately. In addition, this paper uses difference data sets to reflect the patterns and regularities of the original data clearly, and constructs multiple fuzzy systems to consider various characteristics of the differences suitably. To verify effectiveness of the proposed techniques, this paper applies the constructed fuzzy systems to the field of time series prediction, and performs prediction for nonlinear time series examples.

Non-linearity Mitigation Method of Particulate Matter using Machine Learning Clustering Algorithms (기계학습 군집 알고리즘을 이용한 미세먼지 비선형성 완화방안)

  • Lee, Sang-gwon;Cho, Kyoung-woo;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.341-343
    • /
    • 2019
  • As the generation of high concentration particulate matter increases, much attention is focused on the prediction of particulate matter. Particulate matter refers to particulate matter less than $10{\mu}m$ diameter in the atmosphere and is affected by weather changes such as temperature, relative humidity and wind speed. Therefore, various studies have been conducted to analyze the correlation with weather information for particulate matter prediction. However, the nonlinear time series distribution of particulate matter increases the complexity of the prediction model and can lead to inaccurate predictions. In this paper, we try to mitigate the nonlinear characteristics of particulate matter by using cluster algorithm and classification algorithm of machine learning. The machine learning algorithms used are agglomerative clustering, density-based spatial clustering of applications with noise(DBSCAN).

  • PDF

Non-stationary Rainfall Frequency Analysis Based on Residual Analysis (잔차시계열 분석을 통한 비정상성 강우빈도해석)

  • Jang, Sun-Woo;Seo, Lynn;Kim, Tae-Woong;Ahn, Jae-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.449-457
    • /
    • 2011
  • Recently, increasing heavy rainfalls due to climate change and/or variability result in hydro-climatic disasters being accelerated. To cope with the extreme rainfall events in the future, hydrologic frequency analysis is usually used to estimate design rainfalls in a design target year. The rainfall data series applied to the hydrologic frequency analysis is assumed to be stationary. However, recent observations indicate that the data series might not preserve the statistical properties of rainfall in the future. This study incorporated the residual analysis and the hydrologic frequency analysis to estimate design rainfalls in a design target year considering the non-stationarity of rainfall. The residual time series were generated using a linear regression line constructed from the observations. After finding the proper probability density function for the residuals, considering the increasing or decreasing trend, rainfalls quantiles were estimated corresponding to specific design return periods in a design target year. The results from applying the method to 14 gauging stations indicate that the proposed method provides appropriate design rainfalls and reduces the prediction errors compared with the conventional rainfall frequency analysis which assumes that the rainfall data are stationary.

A Neural Networks Model for Flow Forecasting in Nakdong River Basin (낙동강 유역에서의 유량 예측 신경망 모형에 관한 연구)

  • Han, Kun-Yeun;Kim, Dong-Il;Choi, Hyun-Gu;Yoon, Young-Sam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1727-1731
    • /
    • 2008
  • 수자원의 효율적인 관리를 위해서는 신뢰성 있는 유량자료의 획득이 대단히 중요하다. 우리나라는 양질의 유량자료를 획득하기 위해 매년 많은 시간과 돈을 투자하고 있으나 자료의 질적인 면에서 만족할 만한 성과를 얻지 못하고 있다. 현재까지 우리나라의 유량자료는 댐의 수문자료와 수량관리 부처인 건교부에서 운영하는 수위표 지점의 수위-유량곡선에서 산출된 자료에 의존하고 있다. 그러나 수위-유량 관계식을 보정하기 위한 유량측정사업이 지속적이지 못하며, 이 관계식은 유량이 적은 저수기 및 갈수기에는 부정확하다는 한계가 있다. 또한, 국립환경과학원 낙동강물환경연구소에서 오염총량관리를 위한 낙동강수계 유량측정사업을 실시하고 있지만, 목적은 낙동강수계의 오염총량관리 단위유역 말단 47개 지점에서 유량측정을 효율적으로 실시하여 수질정책의 기초자료를 제공하는데 있다. 이 자료 역시 오염총량관리를 위하여 유량측정을 실시하여 수자원의 효율적인 관리를 위한 일 유량을 알 수가 없는 한계점을 가지고 있다. 따라서 저수기 및 갈수기에 수질정책의 기초자료를 제공하기 위해서 하천을 포함한 유역의 정확한 강우-유출특성의 파악이 필요하다. 그러나 강우-유출특성 또한 유역 내 강우의 시 공간적 분포가 다르며 그 자가 비선형성이 강하고 여러 변동성을 포함하므로, 강우로부터 하천의 유출량의 정확한 해석이 불가능하다. 그러나 최근 인공지능 분야에서 신호처리, 지능제어 및 패턴인식 등의 수단으로 사용되고 있는 신경망은 학습이라는 최적화 과정을 통해 입력과 출력으로 구성되는 하나의 시스템을 비선형적으로 구축할 수 있으며 이러한 이점을 활용하여 수자원 분야에서 다양하게 적용되고 있다. 본 연구의 목적은 강우-유출자료 및 댐 방류량 자료의 비선형적인 특정을 가장 잘 반영할 수 있는 신경망모형을 적용하여 수질정책의 기초자료를 제공하기 위하여 신뢰성 있는 유량자료를 산정하는 모형을 개발하는 것이다. 이를 위해서 낙동강물환경연구소에서 오염총량관리를 위한 낙동강수계 유량측정 지점 상류의 댐 방류량의 일 방류량자료와 강우자료를 입력 자료로 하여 유량을 예측할 수 있는 유량예측 신경망 모형 FFBN(Flow Forecasting By Neural)을 개발하였다. 그리고 입력 자료로서 장기유출모형인 SWAT의 모의결과를 입력 자료로 추가한 FFBNS(Flow Forecasting By Neural and SWAT)을 개발하였다. 신경망 모형의 구조는 입력층과 출력층 사이에 하나의 은닉층이 존재하는 다층 신경망으로 구성하였으며, 학습단계에서는 오류 역전파 알고리듬 학습방법 중 모멘텀법을 사용하였다. 예측된 유출량을 실측치와의 비교를 위하여 낙본D지점과 낙본 E지점에 대하여 $2005{\sim}2006$년까지의 모의 결과를 낙동 수위측정지점과 구미 수위측정지점의 실측치 통하여 복잡한 비선형성을 가지는 유출 시계열 자료에 대한 효과적인 최적의 신경망모델을 개발하여 유량을 예측하고 적용 가능성을 검토하고자 한다. 모의 결과는 수질정책의 기초자료 제공에 기여할 수 있을 것으로 판단된다.

  • PDF

Chaos analysis of real estate auction sale price rate time series (부동산 경매 낙찰가율 시계열의 Chaos 분석)

  • Kang, Jun;Kim, Jiwoo;Lee, Hyun Jun;Oh, Kyong Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.371-381
    • /
    • 2017
  • There has never been research on Chaos analysis using real estate auction sale price rate in Korea. In this study, three Chaos analysis methodologies - Hurst exponent, correlation dimension, and maximum Lyapunov exponent - in order to capture the nonlinear deterministic dynamic system characteristics. High level of Hurst exponent and the extremely low maximum Lyapunov exponent provide the tendency and the persistence of the data. The empirical results give two meaningful facts. First, monthly time lags of the correlation dimension are coincident with the time period from the approval auction start day to the sale price fixing day. Second, its weekly time lags correspond to the time period from the last day of request for sale price allocation to the sale price fixing day. Then, this study potentially examines the predictability of the real estate auction price rate time series.

Damage Detection for Bridge Pier System Using filbert-Huang Transom Technique (Hilbert-Huang변환을 이용한 교각시스템의 손상위치 추정기법)

  • 윤정방;심성한;장신애
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.159-168
    • /
    • 2002
  • A recently developed filbert-Huang transform (HHT) technique is applied to detect damage locations of bridge structures. The HHT may be used to identify the locations of damages which exhibit nonlinear and nonstationary behavior, since the HHT can show the instantaneous frequency characteristics of the signal. A series of numerical simulations were conducted for bridge pier systems with damages under a controlled load with sweeping frequency. The results of the numerical simulation study indicate that the HHT method can reasonably identify damage locations using a limited number of acceleration sensors under severe measurement noise condition.

  • PDF

Estimation of future climate change factor based on CMIP6 data (CMIP6 자료 기반 미래 기후변화 할증률 산정)

  • Beak, Dojin;Kim, Jongho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.308-308
    • /
    • 2023
  • 자연재해대책법 제 16조 6에 따라 기후변화로 인한 방재성능목표의 영향을 고려하기 위해 방재성능가이드라인을 설정하여 운영하고 있다. 2017년 공표된 기후변화를 고려한 방재성능목표 강우량의 단기 할증률은 CMIP5 자료를 기반으로 기본 5%, 관심 8%, 주의 10%의 할증률로 구분되어 적용되고 있다. 그러나, 미래 기후변화 시나리오에 따르면 확률강우량이 늘어나는 지역도 있지만, 감소될 것으로 예상되는 지역도 존재한다. 따라서, 모든 지역을 3개의 구간으로 나누어 증가 할증률을 적용하는 것에 대한 검토가 필요하다. 본 연구에서는 CMIP6 기후변화 자료를 시단위로 다운스케일링한 시계열을 이용하여 미래 기후변화로 인한 방재성능목표의 할증률을 산정하고, 각 할증률에 기반한 구간을 상세화하고자 한다. 구체적으로, 현재 기상청에서 제공하는 일단위 기후변화 데이터베이스와, CMIP6에서 제공하는 일단위 기후변화 자료를 구축하고, 분석하였다. 이후 구축된 일단위 자료를 시단위 자료로 Downscaling한 후, 각 이산화탄소 배출 시나리오인 SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5에 대해 앙상블 시계열을 생성하고, 다양한 기후변화의 불확실성을 적절하게 정량화 할 예정이다. 그중에서 방재성능목표와 가장 밀접하다고 생각되는 변수들(연강우량, 8월강우량, 연최대강우량, 30년빈도 확률강우량 등)을 CCF(Cross Correlation Function), ACC(Auto Correlation Function)방법 등을 통해 분석하여 최적의 변수들을 찾고, 그 값들의 앙상블 평균을 통해 안정된 방재성능목표 기후변화 할증률 값을 산정할 예정이다. 169개 지역의 시·군 단위의 티센망과, 238개 지역의 시·군·구 단위의 티센망을 구축하고, 기상청 ASOS(Automated Synoptic Observing System)의 69개 기상관측소 강우관측자료와 AWS(Automatic Weather System)의 419개 기상관측소를 활용하여 지역별 미래 기후변화를 고려한 비선형적 할증률를 제시할 것이다.

  • PDF

Effective Drought Prediction Based on Machine Learning (머신러닝 기반 효과적인 가뭄예측)

  • Kim, Kyosik;Yoo, Jae Hwan;Kim, Byunghyun;Han, Kun-Yeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.326-326
    • /
    • 2021
  • 장기간에 걸쳐 넓은 지역에 대해 발생하는 가뭄을 예측하기위해 많은 학자들의 기술적, 학술적 시도가 있어왔다. 본 연구에서는 복잡한 시계열을 가진 가뭄을 전망하는 방법 중 시나리오에 기반을 둔 가뭄전망 방법과 실시간으로 가뭄을 예측하는 비시나리오 기반의 방법 등을 이용하여 미래 가뭄전망을 실시했다. 시나리오에 기반을 둔 가뭄전망 방법으로는, 3개월 GCM(General Circulation Model) 예측 결과를 바탕으로 2009년도 PDSI(Palmer Drought Severity Index) 가뭄지수를 산정하여 가뭄심도에 대한 단기예측을 실시하였다. 또, 통계학적 방법과 물리적 모델(Physical model)에 기반을 둔 확정론적 수치해석 방법을 이용하여 비시나리오 기반 가뭄을 예측했다. 기존 가뭄을 통계학적 방법으로 예측하기 위해서 시도된 대표적인 방법으로 ARIMA(Autoregressive Integrated Moving Average) 모델의 예측에 대한 한계를 극복하기위해 서포트 벡터 회귀(support vector regression, SVR)와 웨이블릿(wavelet neural network) 신경망을 이용해 SPI를 측정하였다. 최적모델구조는 RMSE(root mean square error), MAE(mean absolute error) 및 R(correlation Coefficient)를 통해 선정하였고, 1-6개월의 선행예보 시간을 갖고 가뭄을 전망하였다. 그리고 SPI를 이용하여, 마코프 연쇄(Markov chain) 및 대수선형모델(log-linear model)을 적용하여 SPI기반 가뭄예측의 정확도를 검증하였으며, 터키의 아나톨리아(Anatolia) 지역을 대상으로 뉴로퍼지모델(Neuro-Fuzzy)을 적용하여 1964-2006년 기간의 월평균 강수량과 SPI를 바탕으로 가뭄을 예측하였다. 가뭄 빈도와 패턴이 불규칙적으로 변하며 지역별 강수량의 양극화가 심화됨에 따라 가뭄예측의 정확도를 높여야 하는 요구가 커지고 있다. 본 연구에서는 복잡하고 비선형성으로 이루어진 가뭄 패턴을 기상학적 가뭄의 정도를 나타내는 표준강수증발지수(SPEI, Standardized Precipitation Evapotranspiration Index)인 월SPEI와 일SPEI를 기계학습모델에 적용하여 예측개선 모형을 개발하고자 한다.

  • PDF

A Study on Ventricular Fibrillation Prediction through neurologic and multi-morphic analyze of intra-cardiac database and Implementation of Simulator (체내 심전도 데이터의 신경학적 분석 및 다형성 판별을 통한 심실세동 예측에 관한 연구 및 시뮬레이터 구현)

  • Shin, K.S.;Kim, J.K.;Park, H.C.;Lee, C.K.;Lee, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.489-490
    • /
    • 2008
  • 본 고에서는 체내 심실신호를 농하여 신경학적 분석 및 다형성의 측면에서 심실세동이 일어나는 것을 예측하는 분석 알고리즘을 설계하였다. 신경학적 측면에서는 시계열 신호의 Peak to Peak Interval을 예측법과 0.15Hz를 기준으로 HRV 신호의 AR Burg 모델링을 통하여 고주파성과 저주파성을 나누어 교감신경과 부교감신경의 활동성 통한 신경학적 예측법을 제시하였으며 또한 체내 심실신호의 비선형적 특성을 고려한 Fractal Dimension을 생성시킴으로서 주기성의 특성과 다형성 통한 예측법을 제시하였다. 체내 심전도를 기반으로 Simulation 하였으며 각 분석별 조합을 통하여 최적의 예측 구조를 찾고자 하였다. 의학적 의미가 있는 민감도와 특이도를 판별하였으며 예측을 위한 수행시간을 실험하였다. 이를 통하여 자율신경 활성도와 다형성 판별을 조합한 방법이 심실세동 예측을 위한 민감도의 측면에서 가장 우수함을 나타내었고 시뮬레이션을 위만 시뮬레이터(Simulator) UI(User Interface)를 제시하였다.

  • PDF