• Title/Summary/Keyword: 시간 패턴

Search Result 2,943, Processing Time 0.03 seconds

3D Cube Mining and Calendar Pattern Based Temporal Mining for Analyzing Power Load Pattern (전력 부하 패턴 분석을 위한 3차원 큐브 마이닝과 캘랜더 패턴 기반 시간 데이터 마이닝)

  • Park, Jin-Hyoung;Shin, Jin-Ho;Piao, Minghao;Lee, Heon-Gyu;Ryu, Keun-Ho
    • Annual Conference of KIPS
    • /
    • 2008.05a
    • /
    • pp.200-203
    • /
    • 2008
  • 최근 전력산업에서의 에너지 가격 및 공급과 수요의 변동, 그리고 기후의 변화에 의해서 부하 예측은 전력회사 경영방침 계획에 있어 중요한 요소가 되었다. 이 논문에서 전력계통의 최적 운용 계획을 위하여 우리가 제안한 기법은 다차원 분석이 가능한 3D 큐브 마이닝과 시간의 변화에 따른 패턴 예측이 가능한 캘린더 기반 시간 데이터 마이닝 기법이다. 이를 통하여 무선 부하 감시 시스템의 부하 데이터의 다차원 분석이 가능하고, 시간 변화에 따른 서로 다른 부하 패턴의 예측이 가능하도록 한다.

Mining Frequent Trajectory Patterns in RFID Data Streams (RFID 데이터 스트림에서 이동궤적 패턴의 탐사)

  • Seo, Sung-Bo;Lee, Yong-Mi;Lee, Jun-Wook;Nam, Kwang-Woo;Ryu, Keun-Ho;Park, Jin-Soo
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.127-136
    • /
    • 2009
  • This paper proposes an on-line mining algorithm of moving trajectory patterns in RFID data streams considering changing characteristics over time and constraints of single-pass data scan. Since RFID, sensor, and mobile network technology have been rapidly developed, many researchers have been recently focused on the study of real-time data gathering from real-world and mining the useful patterns from them. Previous researches for sequential patterns or moving trajectory patterns based on stream data have an extremely time-consum ing problem because of multi-pass database scan and tree traversal, and they also did not consider the time-changing characteristics of stream data. The proposed method preserves the sequential strength of 2-lengths frequent patterns in binary relationship table using the time-evolving graph to exactly reflect changes of RFID data stream from time to time. In addition, in order to solve the problem of the repetitive data scans, the proposed algorithm infers candidate k-lengths moving trajectory patterns beforehand at a time point t, and then extracts the patterns after screening the candidate patterns by only one-pass at a time point t+1. Through the experiment, the proposed method shows the superior performance in respect of time and space complexity than the Apriori-like method according as the reduction ratio of candidate sets is about 7 percent.

  • PDF

The Prediction Model of a Working Pattern According to Working Time Reduction in Construction Sites (근로시간 단축에 따른 건설현장에서의 근로패턴 예측 Model)

  • Kim Hong-Ryul;Yu Il-Han;Kim Kyung-Rai;Shin Dong-Woo
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.316-322
    • /
    • 2002
  • In case of reducing working time, it is difficult that the construction industry is analyzed far-reaching effects caused by a reduction of working time, by approaching with just the total amount of work. Because it has the properties such as the singularity, the outdoor using, a sense of the season unlike other industries. In order to analyze the effect of a reduction of working time on the construction industry, the example of a reduction of working time in domestic other industries related with it was analyzed intensively first. And an example in Japan, which is similar to our existing related laws and industrial structure among foreign construction industries was analyzed, and a relation with the domestic construction industries and an issue were drown a conclusion. This was applied to a field worker and a related main group participating in a real production. And it showed the prediction model for a working pattern and a dealing plan to prepare in a construction site by predicting a working pattern in the management side of a construction site annually.

  • PDF

A Method for Optimal Moving Pattern Mining using Frequency of Moving Sequence (이동 시퀀스의 빈발도를 이용한 최적 이동 패턴 탐사 기법)

  • Lee, Yon-Sik;Ko, Hyun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.1
    • /
    • pp.113-122
    • /
    • 2009
  • Since the traditional pattern mining methods only probe unspecified moving patterns that seem to satisfy users' requests among diverse patterns within the limited scopes of time and space, they are not applicable to problems involving the mining of optimal moving patterns, which contain complex time and space constraints, such as 1) searching the optimal path between two specific points, and 2) scheduling a path within the specified time. Therefore, in this paper, we illustrate some problems on mining the optimal moving patterns with complex time and space constraints from a vast set of historical data of numerous moving objects, and suggest a new moving pattern mining method that can be used to search patterns of an optimal moving path as a location-based service. The proposed method, which determines the optimal path(most frequently used path) using pattern frequency retrieved from historical data of moving objects between two specific points, can efficiently carry out pattern mining tasks using by space generalization at the minimum level on the moving object's location attribute in consideration of topological relationship between the object's location and spatial scope. Testing the efficiency of this algorithm was done by comparing the operation processing time with Dijkstra algorithm and $A^*$ algorithm which are generally used for searching the optimal path. As a result, although there were some differences according to heuristic weight on $A^*$ algorithm, it showed that the proposed method is more efficient than the other methods mentioned.

Energy Saving Algorithm of the Home Gateway considering Service Usage Patterns (서비스 사용 패턴을 고려한 홈 게이트웨이의 전력 절감 알고리즘)

  • Kong, In-Yeup
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1792-1798
    • /
    • 2010
  • Home Gateway is always on for continuous services of home networks. Ubiquitous home networks are extended. so power consumption of home gateways increases by geometric progression. Our algorithm is for home gateway to sleep, listen or wakeup according to network traffic adaptively, as well as to keep always-on service. To do this, it traces the accumulated average of previous sleep periods. In addition to this basic algorithm, we make the profiles for user's living pattern per the day to reflect network usages in detail and adaptively. As the simulation results by comparing with overall accumulated average and per-day accumulated average, in case of the overall accumulated average, the difference the estimation and real value is distributed from 0.43% to 4%. In contrast of this, in case of the per-day accumulated average is distributed from 0.06% to 2%. From this results, we know the profiling of per-day usage pattern can help reduce the difference of the real sleep period and the estimated sleep period.

Classification of Subway Trip Patterns from Smart Card Transaction Databases (교통카드 트랜잭션 데이터베이스에서 지하철 탑승 패턴 분류)

  • Park, Jong-Soo;Kim, Ho-Sung;Lee, Keum-Sook
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.12
    • /
    • pp.91-100
    • /
    • 2010
  • To understand the trip patterns of subway passengers is very important to making plans for an efficient subway system. Accordingly, there have been studies on mining and classifying useful patterns from large smart card transaction databases of the Metropolitan Seoul subway system. In this paper, we define a new classification of subway trip patterns and devise a classification algorithm for eleven trip patterns of the subway users from smart card transaction databases which have been produced about ten million transactions daily. We have implemented the algorithm and then applied it to one-day transaction database to classify the trip patterns of subway passengers. We have focused on the analysis of significant patterns such as round-trip patterns, commuter patterns, and unexpected interesting patterns. The distribution of the number of passengers in each trip pattern is plotted by the get-on time and get-off time of subway transactions, which illustrates the characteristics of the significant patterns.

A Sequential Pattern Mining based on Dynamic Weight in Data Stream (스트림 데이터에서 동적 가중치를 이용한 순차 패턴 탐사 기법)

  • Choi, Pilsun;Kim, Hwan;Kim, Daein;Hwang, Buhyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.2
    • /
    • pp.137-144
    • /
    • 2013
  • A sequential pattern mining is finding out frequent patterns from the data set in time order. In this field, a dynamic weighted sequential pattern mining is applied to a computing environment that changes depending on the time and it can be utilized in a variety of environments applying changes of dynamic weight. In this paper, we propose a new sequence data mining method to explore the stream data by applying the dynamic weight. This method reduces the candidate patterns that must be navigated by using the dynamic weight according to the relative time sequence, and it can find out frequent sequence patterns quickly as the data input and output using a hash structure. Using this method reduces the memory usage and processing time more than applying the existing methods. We show the importance of dynamic weighted mining through the comparison of different weighting sequential pattern mining techniques.

A design of framework for false alarm pattern analysis of intrusion detection system using incremental association rule mining (점진적 연관 규칙을 이용한 침입탐지 시스템의 오 경보 패턴 분석 프레임워크 설계)

  • 전원용;김은희;신문선;류근호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.307-309
    • /
    • 2004
  • 침입탐지시스템에서 발생되는 오 경보는 false positive 와 false negative 로 구분된다. false positive는 실제적인 공격은 아니지만 공격이라고 오인하여 경보를 발생시켜 시스템의 효율성을 떨어뜨리기 때문에 false positive 패턴에 대한 분석이 필요하다. 오 경보 데이터는 시간이 지남에 따라 데이터의 양뿐만 아니라 데이터 패턴의 특성 또한 변하게 된다 따라서 새로운 데이터가 추가될 때마다 오 경보 데이터의 패턴을 분석할 수 있는 도구가 필요하다. 이 논문에서는 오 경보 데이터로부터 false positive 의 패턴을 분석할 수 있는 프레임워크에 대해서 기술한다. 우리의 프레임워크는 시간이 지남에 따라 변하는 데이터의 패턴 특성을 분석할 수 있도록 하기 위해 점진적 연관규칙 기법을 적용한다. 이 프레임워크를 통해서 false positive 패턴 특성의 변화를 효율적으로 관리 할 수 있다.

  • PDF

Efficient Mining of User Behavior patterns by classification of age based on location information (위치에 따른 연령대별 유용한 행동패턴 추출 기법)

  • Kim, HyeRan;Lee, SeungCheol;Kim, UngMo
    • Annual Conference of KIPS
    • /
    • 2007.11a
    • /
    • pp.250-253
    • /
    • 2007
  • 통신기술의 발달로 무선단말기의 보급이 급증하고 무선 네트워크 사용이 일반화됨으로써, 최근 유비쿼터스 컴퓨팅 기술이 중요한 이슈가 되고 있다. 유비쿼터스 컴퓨팅은 시간과 장소의 한계를 넘어 사용자가 하고자 하는 일을 컴퓨팅 환경이 상황을 인지하여 돕는 것을 가능하게 한다. 상황인지를 위해 순차패턴과 시간 연관규칙 탐사를 이용하여 사용자의 행동패턴을 추출하는 연구가 활발히 진행되고 있다. 이러한 연구를 통한 행동패턴은 사용자의 특성을 간과하게 되며, 각 사용자에게 더욱 유용한 서비스를 제공하기 위해서는 사용자를 분류하는 것이 필요하다. 그러나 기존의 연구는 단지 통계적인 사용자의 빈발 행동패턴만을 추출하여 각 사용자의 관심사와는 무관한 서비스 제공이 이루어질 수 있다. 성별, 나이, 직업 등의 개인정보와 위치를 고려하여 사용자에게 더욱 더 효율적이고 유용한 서비스를 제공할 수 있도록 행동패턴을 유형별로 분류할 필요가 있다. 본 논문에서는 각 위치에 따른 사용자의 연령대별 유용한 행동패턴을 추출하여 정확한 서비스를 제공할 수 있는 마이닝 기법을 제안한다.

An Efficient Algorithm for Spatio-Temporal Moving Pattern Extraction (시공간 이동 패턴 추출을 위한 효율적인 알고리즘)

  • Park, Ji-Woong;Kim, Dong-Oh;Hong, Dong-Suk;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.8 no.2 s.17
    • /
    • pp.39-52
    • /
    • 2006
  • With the recent the use of spatio-temporal data mining which can extract various knowledge such as movement patterns of moving objects in history data of moving object gets increasing. However, the existing movement pattern extraction methods create lots of candidate movement patterns when the minimum support is low. Therefore, in this paper, we suggest the STMPE(Spatio-Temporal Movement Pattern Extraction) algorithm in order to efficiently extract movement patterns of moving objects from the large capacity of spatio-temporal data. The STMPE algorithm generalizes spatio-temporal and minimizes the use of memory. Because it produces and keeps short-term movement patterns, the frequency of database scan can be minimized. The STMPE algorithm shows more excellent performance than other movement pattern extraction algorithms with time information when the minimum support decreases, the number of moving objects increases, and the number of time division increases.

  • PDF