• Title/Summary/Keyword: 시간 의존적 거동

Search Result 100, Processing Time 0.023 seconds

Estimation Method of Creep Coefficient in Concrete Structures (콘크리트 구조물에서 크리프 계수 추정 방법)

  • Park, Jong-Bum;Park, Jung-Il;Chang, Sung-Pil;Cho, Jae-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.619-628
    • /
    • 2009
  • To predict the time-dependent behavior of concrete structures, the models which describe the time-dependent characteristics of concrete, i.e. creep and shrinkage are required. However, there must be significant differences between the displacements that are obtained using the given creep and shrinkage models and the measured displacements, because of the uncertainties of creep and shrinkage model itself and those of environmental condition. There are some efforts to reduce these error or uncertainties by using the model which are obtained from creep test for the concrete in construction site. Nevertheless, the predicted values from this model may be still different from the actual values due to the same reason. This study aimed to propose a method of estimating the creep coefficient from the measured displacements of concrete structure, where creep model uncertainty factor was considered as an error factor of creep model. Numerical validation for double composite steel box and concrete beam showed desirable feasibility of the presented method. Consideration of the time-dependent characteristics of creep as one of the error factors make it possible to predict long-term behaviors of concrete structures more realistically, especially long-span PSC girder bridges and concrete cable-stayed bridges of which major problem is the geometry control under construction and maintenance.

Numerical Investigation into Behavior of Retaining Wall Subject to Cycles of Wetting and Drying (습윤-건조 반복작용에 노출되는 옹벽의 거동에 관한 수치해석 연구)

  • Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.13-22
    • /
    • 2013
  • This paper presents the results of a numerical investigation into the behavior of retaining wall subject to cycles of wetting and drying due to rainfall. The stress-pore pressure coupled finite element modeling strategy was first established for stimulating the wall behavior. A series of finite element analyses were then performed on a range of conditions including different rainfall and backfill conditions. The results indicated that the rainfall intensity was the primary influencing factor for the wall behavior. Also revealed was that the pre-rainfall condition determines the magnitudes and the distribution of matric suction which in fact has a significant impact on the behavior of wall during a major rainfall. This result demonstrates the importance of incorporating the pre-rainfall condition for numerical modeling of walls during heavy rainfall. Practical implications of the findings from this study are discussed in great detail.

Smear Effect on Consolidation Behaviors of SCP-improved Ground (SCP 개량지만의 압밀거동에 대한 스미어 효과)

  • Kim, Yun-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.59-66
    • /
    • 2004
  • Sand compaction pile (SCP)-improved ground is composite soil which consists of the SCP and the surrounding soft soil. When a surcharge load is applied to composite ground, time-dependent behaviors occur in the composite soil due to consolidation according to radial flow toward the SCP. In addition, stress transfer also takes place between the SCP and the soft soil. This paper presents the numerical results of cylindrical composite ground that was conducted to investigate smear effect on consolidation behaviors of SCP-improved ground. The results showed that the smeared zone of soft clay had a significant effect on effective stress-pore water pressure response, stress transfer mechanism and stress concentration ratio of composite ground. Amount of stress transfer between the clay and the SCP was maximum in depth of z/H=0.25, and decreased with depth. Stress concentration ratio of composite ground was not constant, but depended on consolidation process. It was also found that the value of stress concentration ratio in soft clay with smeared zone was larger than that in soft clay without smeared zone.

Slope Stability Analysis of Unsaturated Soil Slopes Due to Rainfall Infiltration (강우침투에 따른 불포화 토사사면의 안정해석)

  • 조성은;이승래
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.51-64
    • /
    • 2000
  • This paper presents a procedure of calculating a safety factor of the unsaturated slope suffering from the rainfall infiltration. The process of infiltration into a slope due to rainfall and its effect on the behavior of the soil slope are examined by using a two dimensional finite element flow-deformation coupled analysis. A factor of safety is calculated at various elapsed times after the commencement of rainfall as in the following procedure. First, stresses are estimated at each Gaussian point from the coupled finite element analysis. Then, the global stress smoothing method is applied to get a continuous stress field. Based on this stress field, a factor of safety is calculated for a specified slip surface by a stress integration scheme. Then, a search strategy is used to find out a critical slip surface which is associated with the minimum factor of safety. Some numerical examples are analyzed in order to study the effect of hydraulic conductivity on the slope stability during rain-induced infiltration. According to the results, local failure zone can be formed near the slope surface due to inhomogeneous distribution of hydraulic conductivity If the failure zone is once formed, then the region extends until a large amount of slide activates. Therefore the local failure can be neglected no longer in the stability analysis.

  • PDF

Measurement of Retaining Tensile Load with the Relative Displacement Detector of Ground Anchors (상대변위측정기를 이용한 지반앵커의 보유인장력 측정)

  • Jeong, Hyeon-Sik;Han, Kwang-Suk;Lee, Yeong-Saeng
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.10
    • /
    • pp.59-69
    • /
    • 2017
  • The tension load of the ground anchor inserted in the ground gradually changes over time. In this regard the change of the initial tension load is primarily decreased by the fixation condition of the fixing head and the mechanical characteristics of the tensile material. The subsequent additional tension load is a time-dependent loss mostly due to the fixing conditions of the bonded length and the surrounding ground properties of the field. In this paper, therefore, a measurement system using a relative displacement detector that can relatively easily measure the change of tension load is discussed. As a result of the review, it was confirmed that the results using the relative displacement detector are similar to those of the real scale model test, and it was also confirmed that similar results were obtained with the result of the pull-out test conducted on the ground anchors fixed to weathered rocks condition. In addition, a pull-out test was conducted on the test anchors whose initial tension load loss was relatively large and through this test pull-out behavior of the tension type ground anchors was verified.

The Dynamic Nonlinear Analysis of Shell Containment Building subjected to Aircraft Impact Loading (항공기 충돌에 대한 쉘 격납건물의 동적 비선형해석)

  • 이상진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.567-578
    • /
    • 2002
  • The main purpose of this study is to investigate the dynamic behaviour of containment building in nuclear power plant excited by aircraft impact loading using a lower order 8-node solid element. The yield and failure surfaces for concrete material model is formulated on the basis of Drucker-Prager yield criteria and are assumed to be varied by taking account of the visco-plastic energy dissipation. The standard 8-node solid element has prone to exhibit the element deficiencies and the so-called B bar method proposed by Hughes is therefore adopted in this study. The implicit Newmark method is adopted to ensure the numerical stability during the analysis. Finally, the effect of different levels of cracking strain and several types of aircraft loading are examined on the dynamic behaviour of containment building and the results are quantitatively summarized as a future benchmark.

Viscoelastic Behavior of High Density Polyethylene Using High Tibial Osteotomy with Respect to the Strain Rate (근위경골절골술(HTO)용 X-밴드 플레이트에 적용되는 고밀도 폴리에틸렌(HDPE)의 변형률속도에 따른 점탄성거동)

  • Hwang, Jung-Hoon;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.431-438
    • /
    • 2012
  • The mechanical behavior of the polymeric material, HDPE depends on both time and temperature. The study of the tensile behavior at different strain rates is important in engineering design of the orthopedics device such as X-band plate. The mechanical properties and deformation mechanisms of HDPE are strongly dependent on the applied strain rate. Generally, the deformation behavior of HDPE based on the stress-strain curve is complex because of the highly inhomogeneous nature of plastic deformation, particularly that of necking. Therefore, we attempted to determine the mechanical behavior of HDPE in this study. Normally, tensile testing under various strain rates of the HDPE has been used to determine the mechanical behavior. We performed tensile tests at various strain rates (1 to 500 %/min) to analyze the viscoelastic behavior on increasing the strain rate. A tensile stress-strain curve was plotted from the data, and the point of transition was marked to calculate the transition stress, strain, and modulus.

Development of Quasi-Conforming Shell Element for the Three Dimensional Construction Stage Analysis of PSC Bridge (PSC 교량의 3차원 시공 중 해석기법을 위한 준적합 쉘 요소 개발)

  • Kim, Ki-Du;Byun, Yun-Joo;Kim, Hyun-Ky;Lomboy, Gilson R.;Suthasupradit, Songsak;Kim, Young-Hoe
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.329-338
    • /
    • 2007
  • The PSC box bridge constructed of concrete, reinforcing bar and tendon is a complex structure that exhibits tension cracks, nonlinear behaviour of steel and time dependent behaviour of concrete. The frame element is commonly used for construction stage analysis PSC bridges. However, the frame element does not show sufficient information when in the curved PSC box bridges. For the case of curved PSC bridges, the deformations in the inner and outer web are different. In this case, different jacking forces are required in the inner and outer webs. However, it is impossible to calculate different jacking forces if we use the frame element for construction stage analysis. In order to overcome this problem, the use of the shell element is essential for a three-dimensional construction stage analysis of PSC bridges. In the following, the formulation of a Quasi-conforming shell element and its application of PSC box girder bridge analysis are presented.

A Rate-Dependent Elastic Plastic Constitutive Equation in Finite Deformation Based on a Slip Model (슬립모델을 이용한 변형률의존 유한변형 탄소성재료의 구성방정식 개발)

  • Nam, Yong-Yun;Kim, Sa-Soo;Lee, Sang-Gab
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.77-86
    • /
    • 1997
  • The advanced development in many fields of engineering and science has caused much interests and demands for crashworthiness and non-linear dynamic transient analysis of structure response. Crash and impact problems have a dominant characteristic of large deformation with material plasticity for short time scales. The structural material shows strain rate-dependent behaviors in those cases. Conventional rate-independent constitutive equations used in the general purposed finite analysis programs are inadequate for dynamic finite strain problems. In this paper, a rate-dependent constitutive equation for elastic-plastic material is developed. The plastic stretch rate is modeled based on slip model with dislocation velocity and its density so that there is neither yielding condition, nor loading conditions. Non-linear hardening rule is also introduced for finite strain. Material constants of present constitutive equation are determined by experimental data of mild steel, and the constitutive equation is applied to uniaxile tension loading.

  • PDF

An Experimental Study on the Time-Dependent Deformation of the Alkali Activated Slag Concrete (알칼리 활성 슬래그 콘크리트의 시간의존적 변형에 관한 실험적 연구)

  • Lee, Young-Jun;Kwon, Eun-Hee;Park, Dong-Cheon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.5
    • /
    • pp.457-464
    • /
    • 2015
  • The alternative material for cement has been attracting attention in construction projects. Especially, the alkali activated slag(hereafter, AAS) concrete is able to use for a structural vertical member because of 40MPa of compressive strength, However, the research about time-dependent deformation such as creep which is important to strength member is insufficient. Therefore, in this study, experiments were performed with respect to time-dependent deformation including the drying shrinkage and creep deformation of AAS concrete. The creep deformed ratio of AAS concrete was more than OPC concrete by approximately 4.3% and the dry shrinkage deformation of AAS concrete was more than OPC concrete by approximately 69%. The large amount of sodium silicate, alkali activator, is added causing temperature crack than promoted drying and drying creep which is confirmed by water ration test and SEM.