Journal of the Korea Society of Computer and Information
/
v.20
no.2
/
pp.29-45
/
2015
Systematic theory, concepts, and methodology for the biological evolution have been developed while patterns and principles of the evolution have been actively studied in the past 200 years. Furthermore, they are applied to various fields such as evolutionary economics, evolutionary psychology, evolutionary linguistics, making significant progress in research. In addition, existing studies have applied main biological evolutionary models to artifacts although such methods do not fit to them. These models are also limited to generalize evolutionary patterns of artifacts because they are designed in terms of a subjective point of view of experts who know well about the artifacts. Unlike biological organisms, because artifacts are likely to reflect the imagination of the human will, it is known that the theory of biological evolution cannot be directly applied to artifacts. In this paper, beyond the individual's subjective, the aim of our research is to present evolutionary patterns of a given artifact based on peeping the idea of the public. For this, we propose a text mining approach that presents a systematic framework that can find out the evolutionary patterns of a given artifact and then visualize effectively. In particular, based on our proposal, we focus mainly on a case study of mobile phone that has emerged as an icon of innovation in recent years. We collect and analyze review posts on mobile phone available in the domestic market over the past decade, and discuss the detailed results about evolutionary patterns of the mobile phone. Moreover, this kind of task is a tedious work over a long period of time because a small number of experts carry out an extensive literature survey and summarize a huge number of materials to finally draw a diagram of evolutionary patterns of the mobile phone. However, in this work, to minimize the human efforts, we present a semi-automatic mining algorithm, and through this research we can understand how human creativity and imagination are implemented. In addition, it is a big help to predict the future trend of mobile phone in business and industries.
Lee, Byeong-Ju;Kim, Baek-Jun;Lee, Jae Min;Eo, Soo Hyung
Korean Journal of Environment and Ecology
/
v.33
no.1
/
pp.9-15
/
2019
Artiodactyla, which is an even-toed mammal, widely inhabits worldwide. In recent years, wild Artiodactyla species have attracted public attention due to the rapid increase of crop damage and road-kill caused by wild Artiodactyla such as water deer and wild boar and the decrease of some species such as long-tailed goral and musk deer. In spite of such public attention, however, there have been few studies on Artiodactyla in Korea, and no studies have focused on the trend analysis of Artiodactyla, making it difficult to understand actual problems. Many recent studies on trend used text-mining and co-occurrence analysis to increase objectivity in the classification of research subjects by extracting keywords appearing in literature and quantifying relevance between words. In this study, we analyzed texts from research articles of three countries (Korea, China, and Japan) through text-mining and co-occurrence analysis and compared the research subjects in each country. We extracted 199 words from 665 articles related to Artiodactyla of three countries through text-mining. Three word-clusters were formed as a result of co-occurrence analysis on extracted words. We determined that cluster1 was related to "habitat condition and ecology", cluster2 was related to "disease" and cluster3 was related to "conservation genetics and molecular ecology". The results of comparing the rates of occurrence of each word clusters in each country showed that they were relatively even in China and Japan whereas Korea had a prevailing rate (69%) of cluster2 related to "disease". In the regression analysis on the number of words per year in each cluster, the number of words in both China and Japan increased evenly by year in each cluster while the rate of increase of cluster2 was five times more than the other clusters in Korea. The results indicate that Korean researches on Artiodactyla tended to focus on diseases more than those in China and Japan, and few researchers considered other subjects including habitat characteristics, behavior and molecular ecology. In order to control the damage caused by Artiodactyla and to establish a reasonable policy for the protection of endangered species, it is necessary to accumulate basic ecological data by conducting researches on wild Artiodactyla more.
The low birth rate and shortened military service period are causing concerns about selecting excellent military officers. The Republic of Korea entered a low birth rate society in 1984 and an aged society in 2018 respectively, and is expected to be in a super-aged society in 2025. In addition, the troop-oriented military is changed as a state-of-the-art weapons-oriented military, and the reduction of the military service period was implemented in 2018 to ease the burden of military service for young people and play a role in the society early. Some observe that the application rate for military officers is falling due to a decrease of manpower resources and a preference for shortened mandatory military service over military officers. This requires further consideration of the policy of securing excellent military officers. Most of the related studies have used social scientists' methodologies, but this study applies the methodology of text mining suitable for large-scale documents analysis. This study extracts words of discriminative characteristics from the Republic of Korea Air Force Non-Commissioned Officer Applicant cover letters and analyzes the polarity of pass and fail. It consists of three steps in total. First, the application is divided into general and technical fields, and the words characterized in the cover letter are ordered according to the difference in the frequency ratio of each field. The greater the difference in the proportion of each application field, the field character is defined as 'more discriminative'. Based on this, we extract the top 50 words representing discriminative characteristics in general fields and the top 50 words representing discriminative characteristics in technology fields. Second, the number of appropriate topics in the overall cover letter is calculated through the LDA. It uses perplexity score and coherence score. Based on the appropriate number of topics, we then use LDA to generate topic and probability, and estimate which topic words of discriminative characteristic belong to. Subsequently, the keyword indicators of questions used to set the labeling candidate index, and the most appropriate index indicator is set as the label for the topic when considering the topic-specific word distribution. Third, using L-LDA, which sets the cover letter and label as pass and fail, we generate topics and probabilities for each field of pass and fail labels. Furthermore, we extract only words of discriminative characteristics that give labeled topics among generated topics and probabilities by pass and fail labels. Next, we extract the difference between the probability on the pass label and the probability on the fail label by word of the labeled discriminative characteristic. A positive figure can be seen as having the polarity of pass, and a negative figure can be seen as having the polarity of fail. This study is the first research to reflect the characteristics of cover letters of Republic of Korea Air Force non-commissioned officer applicants, not in the private sector. Moreover, these methodologies can apply text mining techniques for multiple documents, rather survey or interview methods, to reduce analysis time and increase reliability for the entire population. For this reason, the methodology proposed in the study is also applicable to other forms of multiple documents in the field of military personnel. This study shows that L-LDA is more suitable than LDA to extract discriminative characteristics of Republic of Korea Air Force Noncommissioned cover letters. Furthermore, this study proposes a methodology that uses a combination of LDA and L-LDA. Therefore, through the analysis of the results of the acquisition of non-commissioned Republic of Korea Air Force officers, we would like to provide information available for acquisition and promotional policies and propose a methodology available for research in the field of military manpower acquisition.
Seo, Sung-Bo;Lee, Yong-Mi;Lee, Jun-Wook;Nam, Kwang-Woo;Ryu, Keun-Ho;Park, Jin-Soo
Journal of Korea Spatial Information System Society
/
v.11
no.1
/
pp.127-136
/
2009
This paper proposes an on-line mining algorithm of moving trajectory patterns in RFID data streams considering changing characteristics over time and constraints of single-pass data scan. Since RFID, sensor, and mobile network technology have been rapidly developed, many researchers have been recently focused on the study of real-time data gathering from real-world and mining the useful patterns from them. Previous researches for sequential patterns or moving trajectory patterns based on stream data have an extremely time-consum ing problem because of multi-pass database scan and tree traversal, and they also did not consider the time-changing characteristics of stream data. The proposed method preserves the sequential strength of 2-lengths frequent patterns in binary relationship table using the time-evolving graph to exactly reflect changes of RFID data stream from time to time. In addition, in order to solve the problem of the repetitive data scans, the proposed algorithm infers candidate k-lengths moving trajectory patterns beforehand at a time point t, and then extracts the patterns after screening the candidate patterns by only one-pass at a time point t+1. Through the experiment, the proposed method shows the superior performance in respect of time and space complexity than the Apriori-like method according as the reduction ratio of candidate sets is about 7 percent.
Journal of Practical Agriculture & Fisheries Research
/
v.22
no.1
/
pp.113-129
/
2020
In this study we examined the topic analysis and correlation analysis by text mining to extract meaningful information or rules from the self introduction letter of freshman at Korea National College of Agriculture and Fisheries in 2020. The analysis items are described in items related to 'academic' and 'in-school activities' during high school. In the text mining results, the keywords of 'academic' items were 'study', 'thought', 'effort', 'problem', 'friend', and the key words of 'in-school activities' were 'activity', 'thought', 'friend', 'club', 'school' in order. As a result of the correlation analysis, the key words of 'thinking', 'studying', 'effort', and 'time' played a central role in the 'academic' item. And the key words of 'in-school activities' were 'thought', 'activity', 'school', 'time', and 'friend'. The results of frequency analysis and association analysis were visualized with word cloud and correlation graphs to make it easier to understand all the results. In the next study, TF-IDF(Term Frequency-Inverse Document Frequency) analysis using 'frequency of keywords' and 'reverse of document frequency' will be performed as a method of extracting key words from a large amount of documents.
Journal of Practical Agriculture & Fisheries Research
/
v.22
no.2
/
pp.99-114
/
2020
In this study we examined the topic analysis and correlation analysis by text mining from the self introduction letter of freshman at Korea National College of Agriculture and Fisheries(KNCAF) in 2020. The analysis items of the 3rd question were and the 4th question were the motivation for applying to college, the academic plan and the career plan. The text mining to the 3rd question showed that the frequency of 'friends' was overwhelmingly high, followed by keywords such as 'thought', 'time', 'opinion', 'activity', and 'club'. In the 4th question, keyword frequency such as 'thought', 'agriculture', 'KNCAF', 'farm', 'father' was high. The result of association rules analysis for each question showed that the relationship with the highest support level, which means the frequency and importance of the rule, was the {friend} <=> {thought}, {thought} <=> {KNCAF}. The confidence level of a correlation between keywords was the highest in the rules of {teacher}=>{friend}, {agriculture, KNCAF}=>{thought}. Also the lift level that indicates the closeness of two words was the highest in the rules of {friend} <=> {teacher}, {knowledge} <=> {professional}. These keywords are found to play a very important roles in analyzing betweenness centrality and analyzing degree centrality between keywords. The results of frequency analysis and association analysis were visualized with word cloud and correlation graphs to make it easier to understand all the results.
데이타마이닝 분야에서는 대용량의 트랜잭션 데이타베이스와 같은 하나의 데이타베이스로부터 연관 규칙을 찾는 연구가 많이 수행되어왔다. 그러나, 창고형 할인매장이나 백화점 같이 고객 카드를 이용하는 판매점의 등장으로, 단지 트랜잭션에 대한 분석 뿐만이 아니라, 트랜잭션과 고객과의 관계에 대한 분석 또한 요구되고 있다. 즉, 두 개의 데이타베이스로부터 연관 규칙을 찾는 연구가 필요하다. 이 논문에서는 두 데이타베이스 사이에 링크를 생성하여 연관 항목집합을 찾는 알고리즘을 제안한다. 실험 결과, 링크를 이용한 알고리즘은 고객 데이타베이스가 메모리에 거주가능한 크기라면 시간에 따른 분석에 유용함을 보여주었다.Abstract There have been a lot of researches of mining association rules from one database such as transaction database until now. But as the large discount store using customer card emerges, the analysis is not only required about transactions, but also about the relation between transactions and customer data. That is, it is required to search association rules from two databases. This paper proposes an efficient algorithm constructing links from one database to the other. Our experiments show the algorithm using link is useful for temporal analysis of memory-resident customer database.
Large data handling is one of critical issues that the data mining community faces. This is particularly true for computationally intense tasks such as data clustering. Random sampling of instances is one possible means of achieving large data handling, but a pervasive problem with this approach is how to deal with the noise in the evaluation of the learning algorithm. This paper develops a new optimization based clustering approach using an algorithm specifically designed for noisy performance. Numerical results show this algorithm better than the other algorithms such as PAM and CLARA. Also with this algorithm substantial benefits can be achieved in terms of computational time without sacrificing solution quality using partial data.
A problem for mining association rules under the interactive environments is to mine repeatedly association rules with the different minimum support. This problem includes all subproblems except on the facts that mine repeatedly association rules with the s믇 database. This paper proposed the efficient algorithms to improve the performance by using the information of the candidate large itemsets which calculate the previous association rules. The proposed algorithms were compared with the conventional algorithm with respect to the execution time. The comparisons show that the proposed algorithms achieve 10∼30% more gain than the conventional algorithm.
Proceedings of the Korean Information Science Society Conference
/
2008.06b
/
pp.200-204
/
2008
검색엔진을 사용해 질의를 입력 후 사용자가 원하는 정보를 얻을 때까지의 검색 결과정보의 탐색 범위에 대해 설문한 연구 보고서에 검색 결과정보의 첫 페이지만 보는 사용자가 설문인원의 41%를 차지했고, 상위 3페이지만 사용하는 사용자는 88%에 달한다고 하였다. 따라서 검색결과의 상위순위는 사용자의 정보 존재여부를 판단하는 중요한 척도가 된다. 또한 인터넷의 방대한 정보로 인해 정보 홍수에 빠진 사람들은 정보에 대한 까다로운 요구를 하고 있다. 이를 테면 개인화 또는 맞춤화된 정보를 제공 받기를 원하고 있다. 정보검색시 대다수의 사용자들은 질의의 길이를 2단어 이하의 키워드를 사용하여 질의가 특정한 토픽을 지향하도록 하고 있다. 본 논문에서는 데이터 마이닝의 연관규칙을 적용 사용자 프로파일 DB내 질의에 대한 사용자 질의패턴을 분석하여 '분석 Agent' 통한 연관 질의 리스트를 생성하고 '추천 Agent'는 사용자들의 취향변화 즉 시간에 따라 변하는 관심영역 또는 사용자 질의 변화에 대해서 날짜별 가중치를 부여하여 사용자와 상호교류를 통해 사용자에게 맞춤형 질의를 추천하는 방안을 제시하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.