• Title/Summary/Keyword: 시간의존적

Search Result 499, Processing Time 0.03 seconds

Design and Implementation of Network Switching Software based on Hardware Abstraction Layer (하드웨어 추상화 계층에 기반한 네트워크 스위치 소프트웨어의 설계 및 구현)

  • 김지현;김준우;강경태;이원석;신현식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10c
    • /
    • pp.658-660
    • /
    • 2003
  • 내장형 시스템의 일종인 네트워크 스위치는 소프트웨어의 하드웨어 의존성 때문에 그 개발에 어려움이 있다. 첫째, 하드웨어와 소프트웨어의 개발이 순차적으로 밖에 이루어지지 못하므로 개발 시간이 현저히 지연되며, 둘째. 하드웨어에 따라 소프트웨어가 이식되어야 하므로 개발 노력이 낭비된다. 특히 네트워크 스위치의 소프트웨어는 하드웨어에 의존적일 뿐 아니라, 소프트웨어 모듈 간에도 의존적인 요소가 존재하므로 개별적으로 개발된 소프트웨어들의 통합에 어려움이 있다. 본 논문에서는 네트워크 스위치 개발 시 앞서 언급한 내장형 시스템 개발 문제점을 해결하는 동시에, 소프트웨어 간의 의존성 역시 해결할 수 있는 소프트웨어 구조로써 가상의 스위치 계층을 설계하고 구현하였다. 또한 사례연구로써 OSI 2계층에서 동작하는 리눅스 기반의 스위치를 위한 각종 프로토콜을 본 논문에서 제안하는 가상의 스위치 계층을 기반으로 하여 개발하였으며. 개발 경험을 통하여 가상의 스위치 계층이 하드웨어와 소프트웨어 개발을 독립적으로 수행할 수 있도록 함으로써 스위치 개발 시간을 단축시키며, 또한 소프트웨어 통합 시 그 복잡도를 낮추고 소프트웨어의 신뢰성을 높이는 것을 검증하였다.

  • PDF

Nonlinear Analysis of Segmentally Erected Prestressed Concrete Cable-Stayed Bridges (시공단계를 고려한 프리스트레스트 콘크리트 사장교의 비선형 해석)

  • Lee, Jae Seok;Kang, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.49-62
    • /
    • 1994
  • An analysis method for the time-dependent nonlinear analysis of segmentally erected planar prestressed concrete cable-stayed bridges was described. To account for the time-dependent effects, load history, creep, shrinkage. aging of concrete and relaxation of prestress were considered. Changes in boundary conditions and loads, installing and removing frame elements, stressing, restressing and removing cables and prestressing tendons were incorporated for modeling segmental erection operations. One typical example on segmentally erected prestressed concrete cable-stayed bridge was presented to illustrate the analysis method. Results of this example show that it is important to follow the development of stresses and deformations at all stages of construction to predict the true response of the bridge through its various load history.

  • PDF

Determination of Efficient Shoring System in RC Frame Structures Considering Time-Dependent Behavior of Concrete (시간의존적 거동을 고려한 철근콘크리트 골조의 효율적인 지지시스템 결정)

  • 김진국;홍수미;곽효경
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.225-239
    • /
    • 2004
  • In this paper, systematic analyses for the shoring systems installed to support applied loads during construction are performed on the basis of the numerical approach introduced in the previous study. Structural behaviors require changes in design variables such as types of shoring systems, shore stiffness and shore spacing. In this paper, the design variable are analyzed and discussed. The time dependent deformations of concrete and construction sequences of frame structures are also taken into account to minimize structural instability and to improve design of shoring system, because those effects may increase axial forces delivered to shores. From many parametric studies, it can be recommended that the most effective shoring system is 2SlR(two shores and one reshore)

A Simplified Method for Creep Analysis of R/C Beams (철근콘크리트 보의 크리이프 단순 해석법)

  • 곽효경;서영재
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.267-280
    • /
    • 1997
  • This paper deals with the development of simplified methods to predict the creep deformation of reinforced concrete beams. The layer approach based on a degenerate kernel of compliance function in form of Dirichlet series is mentioned and a simplified analytical method derived from the equilibrium equations and compatibility conditions is proposed to overcome the sophisticated calculation procedures in the classical creep analysis. Correlation studies between analytical and experimental results and design codes are conducted with the objective to establish the validity of the proposed methods. Besides, various parameter studies are conducted with the objective to identify the effects of cracking, steel ratio and sectional shape in the creep deformation and the obtained results are discussed.

  • PDF

Rating and Lifetime Prediction of a Bridge with Maintenance (유지관리보수가 된 교량의 내하력평가 및 잔존수명 예측)

  • Seung-Ie Yang;Han-Jung Kim
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.108-115
    • /
    • 2003
  • Bridges are rated at two levels by either Load Factor Design (LFD) or Allowable Stress Design (ASD). The lower level rating is called Inventory Rating and the upper level rating is called Operating Rating. To maintain bridges effectively, there is an urgent need to assess actual bridge loading carrying capacity and to predict their remaining life from a system reliability viewpoint. The lifetime functions are introduced and explained to predict the time-dependent failure probability. The bridge studied in this paper was built 30 years ago in rural area. For this bridge, the load test and rehabilitation were conducted. The time-dependent system failure probability is predicted with or without rehabilitation. As a case study, an optional rehabilitation is suggested, and fir this rehabilitation, load rating is computed and the time-dependent system failure probability is predicted. Based on rehabilitation costs and extended service lifes, the optimal rehabilitation is suggested.

Time-Dependent Deformation Characteristics of Geosynthetic-Reinforced Soil Using Plane Strain Compression Tests (평면변형압축시험을 이용한 보강토의 시간 의존적 변형 특성 연구)

  • Yoo Chung-Sik;Kim Sun-Bin;Lee Bong-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.85-97
    • /
    • 2005
  • Despite a number of advantages of reinforced earth walls over conventional concrete retaining walls, there exist concerns over long-term residual deformation when subjected to repeated and/or cyclic loads, especially when used as part of permanent structures. In view of these concerns, in this paper time-dependent deformation characteristics of geosynthetic reinforced soil under sustained and/or repeated loads were investigated using a series of plane strain compression tests on geogrid reinforced weathered granite soil specimens. The results indicate that sustained or repeated loads can yield appreciable magnitudes of residual deformations, and that the residual deformations are influenced not only by the loading characteristics but by the mechanical properties of geogrid. It is also found that the preloading technique can be effectively used in controlling residual deformations of reinforced soils subjected to sustained and/or repeated loads.

A Study on the Time-Dependent Deformation Behaviors of PMMA in Nanoindentation Process for Hyperfine Pit Structure Fabrication (극미세 점 구조체 제작을 위한 나노압입 공정에서 PMMA의 시간의존적 변형거동에 관한 연구)

  • Kim Hyun-Il;Kang Chung-Gil;Youn Sung-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.62-70
    • /
    • 2005
  • The nanoindenter and AFM have been used for nanofabrication, such as nanolithography, nanowriting, and nanopatterning, as well as measurement of mechanical properties and surface topology. Nanoscale indents can be used as cells for molecular electronics and drug delivery, slots for integration into nanodevices, and defects for tailoring the structure and properties. Therefore, it is very important to make indents of desired morphology (shape, size and depth). Indents of different shapes can be obtained by using indenters of different geometries such as a cube comer and conical and spherical tips. The depth and size of indents can be controlled by making indentations at different indentation loads. However, in case of viscoplastic viscoelastic materials such as polymethylmethacrylate (PMMA) the time dependent deformation (TDD) should also be considered. In this study, the effect of process parameters such as loading rate and hold-time at peak load on the indent morphology (maximum penetration depth, elastic recovery, transient creep recovery, residual depth pile-up height) of PMMA were studied for hyperfine pattern fabrication.

A Transient Separation Behavior of PDMS/PSF Hollow Fiber Membrane Modules for Ethanol-Water Mixtures (PDMS/PSF 중공사 분리막의 시간 의존적 에탄올-물 분리 거동 연구)

  • Muhammad Junaid, Ammar;Arepalli, Devipriyanka;Kim, Min-Zy;Ha, Seong Yong;Cho, Churl Hee
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.163-171
    • /
    • 2022
  • Many studies on pervaporation (PV) for the separation of dilute alcohols as an alternative to conventional energy-intensive technique of distillation have been conducted earlier. The pervaporation transition behavior of ethanol-water mixtures through the PDMS/PSF membrane is important, in order to understand the mechanism of diffusion process. Therefore, in the present work, transient PV behavior for 50 wt% EtOH/H2O mixture at 50℃ was investigated by using 1194 cm2 PDMS/PSF hollow fiber membrane modules. The overall total flux and the separation factor of all the membrane modules increased initially and then gradually decreased with respect to PV time. The initial increase can be attributed to fact that membrane fibers were dry and it took time to dissolve into the membrane surface, but the subsequent decrease is due to the depletion of ethanol concentration in the feed. Therefore, it was confirmed that the ethanol permeation through a PDMS membrane is governed by the solution-diffusion mechanism.